
 A to Z of C

807

OFFSET Count TYPE Description
0000h 1 byte Manufacturer.

10=ZSoft
0001h

1 byte

Version information
0=PC Paintbrush v2.5
2=PC Paintbrush v2.8 w palette information
3=PC Paintbrush v2.8 w/o palette information
4=PC Paintbrush/Windows
5=PC Paintbrush v3.0+

0002h 1 byte Encoding scheme, 1 = RLE, none other known

0003h 1 byte Bits per pixel
0004h 1 word left margin of image
0006h 1 word upper margin of image
0008h 1 word right margin of image
000Ah 1 word lower margin of image
000Ch 1 word Horizontal DPI resolution
000Eh 1 word Vertical DPI resolution
0010h 48 byte Color palette setting for 16-color images

16 RGB triplets
0040h 1 byte reserved
0041h 1 byte Number of color planes = "NCP"
0042h 1 word Number of bytes per scanline (always even,

use instead of right margin-left margin).
="NBS"

0044h 1 word Palette information
1=color/bw palette
2=grayscale image

0046h 1 word Horizontal screen size
0048h 1 word Vertical screen size
004Ah 54 byte reserved, set to 0

The space needed to decode a single scan line is "NCP"*"NBS" bytes, the last byte may be a
junk byte which is not displayed. After the image data, if the version number is 5 (or
greater?) there possibly is a VGA color palette. The color ranges from 0 to 255, 0 is zero
intensity, 255 is full intensity. The palette has the following format :

OFFSET Count TYPE Description
0000h 1 byte VGA palette ID (=0Ch)
0001h 768 byte RGB triplets with palette information

72.15 PIF
The Program Information Files have stayed a long time with the PC. They origi- nated

from IBMs Topview, were carried on by DoubleView and DesqView, and today they are
used by Windows and Windows NT. The PIF files store additional information about
executables that are foreign to the running multitasking system such as ressource usage,
keyboard and mouse virtualization and hotkeys. The original (Topview) PIF had a size of

A to Z of C

808

171h bytes, after that, there come the various extensions for the different operating
environments. The different extensions are discussed in their own sections.

OFFSET Count TYPE Description
0000h 1 byte reserved
0001h 1 byte Checksum
0002h 30 char Title for the window
0020h 1 word Maximum memory reserved for program
0022h 1 word Minimum memory reserved for program
0024h 63 char Path and filename of the program
0063h 1 byte 0 - Do not close window on exit

other - Close window on exit
0064h 1 byte Default drive (0=A: ??)
0065h 64 char Default startup directory
00A5h 64 char Parameters for program
00E5h 1 byte Initial screen mode, 0 equals mode 3 ?
00E6h 1 byte Text pages to reserve for program
00E7h 1 byte First interrupt used by program
00E8h 1 byte Last interrupt used by program
00E9h 1 byte Rows on screen
00EAh 1 byte Columns on screen
00EBh 1 byte X position of window
00ECh 1 byte Y position of window
00EDh 1 word System memory ?? whatever
00EFh 64 char ?? Shared program path
012Fh 64 char ?? Shared program data file
016Fh 1 word Program flags

72.16 RTF
RTF text is a form of encoding of various text formatting properties, document

structures, and document properties, using the printable ASCII character set. Special
characters can be also thus encoded, although RTF does not prevent the utilization of
character codes outside the ASCII printable set. The main encoding mechanism of "control
words" provides a name space that may be later used to expand the realm of RTF with
macros, programming, etc.

1. BASIC INGREDIENTS

Control words are of the form:

\lettersequence <delimiter> where <delimiter>. is:

. a space: the space is part of the control word.

. a digit or - means that a parameter follows. The following digit sequence is then delimited by
a space or any other non-letter-or-digit as for control words.

 A to Z of C

809

. any other non-letter-or digit: terminates the control word, but is not a part of the control
word.

By "letter:, here we mean just the upper and lower case ASCII letters.

Control symbols consist of a \ character followed by a single non-letter. They require no
further delimiting.

Notes: control symbols are compact, but there are not too many of them. The number of
possible control words are not limited.

The parameter is partially incorporated in control symbols, so that a program that does not
understand a control symbol can recognize and ignore the corresponding parameter as well.

In addition to control words and control symbols, there are also the braces:

{ group start, and

} group end. The text grouping will be used for formatting

and to delineate document structure - such as the footnotes, headers, title, and so on. The
control words, control symbols, and braces constitute control information. All other characters
in RTF text constitute "plain text".

Since the characters \, {, and } have specific uses in RTF, the control symbols \\,\{, and \}
are provided to express the corresponding plain characters.

2. WHAT RTF TEXT MEANS (SEMANTICS)

The reader of a RTF stream will be concerned with:
Separating control information from plain text. Acting on control information. This is designed
to be a relatively simple process, as described below. Some control information just
contributes special characters to the plain text stream. Other information serves to change
the "program state" which includes properties of the document as a whole and also a stack of
"group states" that apply to parts. Note that the group state is saved by the { brace and is
restored by the } brace. The current group state specifies:

1. the "destination" or part of the document that the plain text is building up.
2. the character formatting properties - such as bold or italic.
3. the paragraph formatting properties - such as justified.
4. the section formatting properties - such as number of columns.

Collecting and properly disposing of the remaining "plain text" as directed by the current
group state.

In practice the RTF reader will proceed as follows:

A to Z of C

810

0. read next char

1. if ={

stack current state. current state does not change.
continue.

2. if =}

unstack current state from stack. this will change the state in general.

3. if =\

collect control word/control symbol and parameter, if any. look up
word/symbol in symbol table (a constant table) and act according to the
description there. The different actions are listed below. Parameter is left
available for use by the action.

Leave read pointer before or after the delimiter, as appropriate.

After the action, continue.

4. otherwise, write "plain text" character to current destination using current
formatting properties.

Given a symbol table entry, the possible actions are as follows:

A. Change destination:
change destination to the destination described in the entry.
Most destination changes are legal only immediately after a {.
Other restrictions may also apply (for example, footnotes may not be nested.)

B. Change formatting property:
The symbol table entry will describe the property and whether the parameter
is required.

C. Special character:

The symbol table entry will describe the character code..
goto 4.

D. End of paragraph
This could be viewed as just a special character.

E. End of section
This could be viewed as just a special character.

F. Ignore
3. SPECIAL CHARACTERS

The special characters are explained as they exist in Mac Word. Clearly, other characters may
be added for interchange with other programs. If a character name is not recognized by a
reader, according to the rules described above, it will be simply ignored.

 A to Z of C

811

\chpgn current page number (as in headers)
\chftn auto numbered footnote reference(footnote to follow in a group)

\chpict placeholder character for picture (picture to follow in a group)
\chdate current date (as in headers)
\chtime current time (as in headers)
\| formula character
\~ non-breaking space
\- non-required hyphen
_ non-breaking hyphen
\page required page break
\line required line break (no paragraph break)
\par end of paragraph.
\sect end of section and end of paragraph.
\tab same as ASCII 9

For simplicity of operation, the ASCII codes 9 and 10 will be accepted as \tab and \par
respectively. ASCII 13 will be ignored. The control code \<10> will be ignored. It may be used
to include "soft" carriage returns for easier readability but which will have no effect on the
interpretation.

4. DESTINATIONS

The change of destination will reset all properties to default. Changes are legal only at the
beginning of a group (by group here we mean the text and controls enclosed in braces.)

\rtf<param> The destination is the document. The parameter is the version number of the

writer. This destination preceded by { the beginnings of RTF documents and
the corresponding } marks the end. Legal only once after the initial {. Small
scale interchange of RTF where other methods for marking the end of string
are available, as in a string constant, need not include this identification but
will start with this destination as the default.

\pict The destination is a picture. The group must immediately follow a \chpict
character. The plain text describes the picture as a hex dump (string of
characters 0,1,...9, a, ..., e, f.)

\footnote The destination is a footnote text. The group must immediately follow the
footnote reference character(s).

\header The destination is the header text for the current section. The group must
precede the first plain text character in the section.

\headerl Same as above, but header for left-hand pages.
\headerr Same as above, but header for right-hand pages.
\headerf Same as above, but header for first page.
\footer Same as above, but footer.
\footerl Same as above, but footer for left-hand pages.
\footerr Same as above, but footer for right-hand pages.
\footerf Same as above, but header for first page.
\ftnsep Same as above, but text is footnote separator
\ftnsepc Same as above, but text is separator for continued footnotes.

A to Z of C

812

\ftncn Same as above, but text is continued footnote notice.
\info text is information block for the document. Parts of the text is further classified

by "properties" of the text that are listed below - such as "title". These are not
formatting properties, but a device to delimit and identify parts of the info
from the text in the group.

\stylesheet text is the style sheet for the document. More precisely, text between
semicolons are taken to be style names which will be defined to stand for the
formatting properties which are in effect.

\fonttbl font table. See below.
\colortbl color table. See below.
\comment text will be ignored.

5. DOCUMENT FORMATTING PROPERTIES

(000 stands for a number which may be signed)

\paperw000 paper width in twips 12240
\paperh000 paper height 15840
\margl000 left margin 1800
\margr000 right margin 1800
\margt000 top margin 1440
\margb000 bottom margin 1440
\facingp facing pages
\gutter000 gutter width
\deftab000 default tab width 720
\widowctrl enable widow control
\endnotes footnotes at end of section
\ftnbj footnotes at bottom of page default
\ftntj footnotes beneath text (top just)
\ftnstart000 starting footnote number 1
\ftnrestart restart footnote numbers each page
\pgnstart000 starting page number 1
\linestart000 starting line number 1
\landscape printed in landscape format

(the "next file" property will be encoded in the info text)

6. SECTION FORMATTING PROPERTIES

\sectd reset to default section properties
\nobreak break code
\colbreak break code default
\pagebreak break code
\evenbreak break code
\oddbreak break code
\pgnrestart restart page numbers at 1
\pgndec page number format decimal default

 A to Z of C

813

\pgnucrm page number format uc roman
\pgnlcrm page number format lc roman
\pgnucltr page number format uc letter
\pgnlcltr page number format lc letter
\pgnx000 auto page number x pos 720
\pgny000 auto page number y pos 720
\linemod000 line number modulus
\linex000 line number - text distance 360
\linerestart line number restart at 1 default
\lineppage line number restart on each page
\linecont line number continued from prev section
\headery000 header y position from top of page 720
\footery000 footer y position from bottom of page 720
\cols000 number of columns 1
\colsx000 space between columns 720
\endnhere include endnotes in this section
\titlepg title page is special

7. PARAGRAPH FORMATTING PROPERTIES

\pard dreset to default para properties.
\s000 style
\ql quad left (default)
\ql right
\qj justified
\qc centered
\fi000 first line indent
\li000 left indent
\ri000 right indent
\sb000 space before
\sa000 space after
\sl000 space between lines
\keep keep
\keepn keep with next para
\sbys side by side
\pagebb page break before
\noline no line numbering
\brdrt border top
\brdrb border bottom
\brdrl border left
\brdrr border right
\box border all around
\brdrs single thickness
\brdrth thick
\brdrsh shadow
\brdrdb double

A to Z of C

814

\tx000 tab position
\tqr right flush tab (these apply to last specified pos)
\tqc centered tab
\tqdec decimal aligned tab
\tldot leader dots
\tlhyph leader hyphens
\tlul leader underscore
\tlth leader thick line

8. CHARACTER FORMATTING PROPERTIES

\plain reset to default text properties.
\b bold
\i italic
\strike strikethrough
\outl outline
\shad shadow
\scaps small caps
\caps all caps
\v invisible text
\f000 font number n
\fs000 font size in half points 24
\ul underline
\ulw word underline
\uld dotted underline
\uldb double underline
\up000 superscript in half points
\dn000 subscript in half points

9. INFO GROUP

The plain text in the group is used to specify the various
fields of the information block. The current field may be
thought of as a particular setting of the "sub-destination"
property of the text..

\title following plain text is the title
\subject following text is the subject
\operator
\author
\keywords
\doccomm comments (not to be confused with \comment)
\version
\nextfile following text is name of "next" file

The other properties assign their parameters directly to the

 A to Z of C

815

info block.

\verno000 internal version number
\creatim creation time follows
\yr000 year to be assigned to previously specified timefield
\mo000
\dy000
\hr000
\min000
\sec000
\revtim revision time follows
\printtim print time follows
\buptim backup time follows
\edmins00 editing minutes
\nofpages000
\nofwords000
\noofchars000
\id000 internal ID number

72.17 SCR
 SCR files are Windows EXE files (EXE NE) with the extension SCR. Windows calls the
.SCR file with two command-line options:

/s to launch the screensaver
/c to configure the screensaver

For the windows control panel to recognise the screensaver, the program's module

description string must begin with SCRNSAVE: (in uppercase). So, if writing a Visual Basic
screensaver, simply set the application title to something like "SCRNSAVE:My Screensaver"

To create a new screen saver simply write a program that checks the command-line
option when starting and performs the appropriate action. The display should use a full-
screen window (usually with a black background) and should end when any key is pressed or
when the mouse is moved.
 Compile the program to .SCR.

72.18 WAV
 The Windows .WAV files are RIFF format files. Some programs expect the fmt block
right behind the RIFF header itself, so your programs should write out this block as the first
block in the RIFF file.

The subblocks for the wave files are
RiffBLOCK [data]

A to Z of C

816

This block contains the raw sample data. The necessary information for playback is contained
in the [fmt] block.

RiffBLOCK [fmt]
This block contains the data necessary for playback of the sound files. Note the blank after fmt
!

OFFSET Count TYPE Description
0000h 1 word Format tag

1 = PCM (raw sample data)
2 etc. for APCDM, a-Law, u-Law ...

0002h 1 word Channels (1=mono,2=stereo,...)
0004h 1 dword Sampling rate
0008h 1 dword Average bytes per second (=sampling

rate*channels)
000Ch 1 word Block alignment / reserved ??
000Eh 1 word Bits per sample (8/12/16-bit samples)

RiffBLOCK [loop]
This block is for looped samples. Very few programs support this block, but if your program
changes the wave file, it should preserve any unknown blocks.

OFFSET Count TYPE Description
0000h 1 dword Start of sample loop
0004h 1 dword End of sample loop

72.19 ZIP
 Following is the official documenation of PKZIP.

PKZIP® Application Note

File: APPNOTE.TXT - .ZIP File Format Specification
Version: 4.0
Revised: 11/01/2000

I. Disclaimer

II. General Format of a .ZIP file

A. Local file header

B. File data

C. Data descriptor

D. Central directory structure

E. Explanation of fields

 A to Z of C

817

F. General notes

III. UnShrinking - Method 1

IV. Expanding - Methods 2-5

V. Imploding - Method 6

VI. Tokenizing - Method 7

VII. Deflating - Method 8

VIII. Decryption

I. Disclaimer

Although PKWARE will attempt to supply current and accurate information relating to
its file formats, algorithms, and the subject programs, the possibility of error can not
be eliminated. PKWARE therefore expressly disclaims any warranty that the
information contained in the associated materials relating to the subject programs
and/or the format of the files created or accessed by the subject programs and/or the
algorithms used by the subject programs, or any other matter, is current, correct or
accurate as delivered. Any risk of damage due to any possible inaccurate information
is assumed by the user of the information. Furthermore, the information relating to
the subject programs and/or the file formats created or accessed by the subject
programs and/or the algorithms used by the subject programs is subject to change
without notice.

II. General Format of a ZIP file

Files stored in arbitrary order. Large zipfiles can span multiple diskette media or be
split into user-defined segment sizes. The minimum user-defined segment size for a
split .ZIP file is 64K..

Overall zipfile format:

[local file header1]
[file data 1]
[data_descriptor 1]
.
.
.
[local file header n]
[file data n]
[data_descriptor n]
[central directory]

A. Local file header:
local file header signature 4 bytes (0x04034b50)

A to Z of C

818

version needed to extract 2 bytes

general purpose bit flag 2 bytes

compression method 2 bytes

last mod file time 2 bytes

last mod file date 2 bytes

crc-32 4 bytes

compressed size 4 bytes

uncompressed size 4 bytes

filename length 2 bytes

extra field length 2 bytes

filename (variable size)

extra field (variable size)
B. File data:

Immediately following the local header for a file is the
compressed or stored data for the file. The series of [local file
header][file data][data descriptor] repeats for each file in the
.ZIP archive.

C. Data descriptor:
crc-32 4 bytes

compressed size 4 bytes

uncompressed size 4 bytes

This descriptor exists only if bit 3 of the general purpose bit
flag is set (see below). It is byte aligned and immediately
follows the last byte of compressed data. This descriptor is
used only when it was not possible to seek in the output zip
file, e.g., when the output zip file was standard output or a
non seekable device.

D. Central directory structure:

[file header 1]
.
.
.
[file header n]
[digital signature]
[end of central directory record]

File header:
central file header signature 4 bytes (0x02014b50)
version made by 2 bytes
version needed to extract 2 bytes
general purpose bit flag 2 bytes
compression method 2 bytes

 A to Z of C

819

last mod file time 2 bytes
last mod file date 2 bytes
crc-32 4 bytes
compressed size 4 bytes
uncompressed size 4 bytes
filename length 2 bytes
extra field length 2 bytes
file comment length 2 bytes
disk number start 2 bytes
internal file attributes 2 bytes
external file attributes 4 bytes
relative offset of local header 4 bytes
filename (variable size)
extra field (variable size)
file comment (variable size)
End of central dir record:

end of central dir signature
4 bytes
(0x06054b50)

number of this disk 2 bytes
number of the disk with the start of the central
directory

2 bytes

total number of entries in the central dir on this
disk

2 bytes

total number of entries in the central dir 2 bytes
size of the central directory 4 bytes
offset of start of central directory
with respect to the starting disk number

4 bytes

.ZIP file comment length 2 bytes

.ZIP file comment (variable size)
E. Explanation of fields:

version made by (2 bytes)
The upper byte indicates the compatibility of the file attribute
information. If the external file attributes are compatible with
MS-DOS and can be read by PKZIP for DOS version 2.04g then
this value will be zero. If these attributes are not compatible,
then this value will identify the host system on which the
attributes are compatible. Software can use this information to
determine the line record format for text files etc. The current
mappings are:

0 -MS-DOS and OS/2 (FAT / VFAT / FAT32 file systems)
1 -Amiga
2 -OpenVMS
3 -Unix

A to Z of C

820

4 -VM/CMS
5 -Atari ST
6 -OS/2 H.P.F.S.
7 -Macintosh
8 -Z-System
9 -CP/M

10 -Windows NTFS
11 thru 255 - unused

The lower byte indicates the version number of the software
used to encode the file. The value/10 indicates the major
version number, and the value mod 10 is the minor version
number.

version needed to extract (2 bytes)
The minimum software version needed to extract the file,
mapped as above.

general purpose bit flag: (2 bytes)
Bit 0: If set, indicates that the file is encrypted.

(For Method 6 - Imploding)
Bit 1: If the compression method used was type 6, Imploding, then

this bit, if set, indicates an 8K sliding dictionary was used. If
clear, then a 4K sliding dictionary was used.

Bit 2: If the compression method used was type 6, Imploding, then
this bit, if set, indicates an 3 Shannon-Fano trees were used to
encode the sliding dictionary output. If clear, then 2 Shannon-
Fano trees were used.

(For Methods 8 and 9 - Deflating)
Bit 2 Bit 1

0 0 Normal (-en) compression option was used.
0 1 Maximum (-exx/-ex) compression option was used.
1 0 Fast (-ef) compression option was used.
1 1 Super Fast (-es) compression option was used.

Note: Bits 1 and 2 are undefined if the compression method is any
other.

Bit 3: If this bit is set, the fields crc-32, compressed size and
uncompressed size are set to zero in the local header. The
correct values are put in the data descriptor immediately
following the compressed data. (Note: PKZIP version 2.04g for
DOS only recognizes this bit for method 8 compression, newer
versions of PKZIP recognize this bit for any compression
method.)

Bit 4:Reserved for use with method 8, for enhanced deflating.
Bit 5: If this bit is set, this indicates that the file is compressed

patched data.(Note: Requires PKZIP version 2.70 or greater)

 A to Z of C

821

Bit 6:Currently unused.
Bit 7:Currently unused.
Bit 8:Currently unused.
Bit 9:Currently unused.

Bit 10:Currently unused.
Bit 11:Currently unused.
Bit 12:Reserved by PKWARE for enhanced compression.
Bit 13:Reserved by PKWARE.
Bit 14:Reserved by PKWARE.
Bit 15:Reserved by PKWARE.

compression method: (2 bytes)
(see accompanying documentation for algorithm descriptions)

0 - The file is stored (no compression)
1 - The file is Shrunk
2 - The file is Reduced with compression factor 1
3 - The file is Reduced with compression factor 2
4 - The file is Reduced with compression factor 3
5 - The file is Reduced with compression factor 4
6 - The file is Imploded
7 -Reserved for Tokenizing compression algorithm
8 - The file is Deflated
9 - Enhanced Deflating using Deflate64(tm)

10 - PKWARE Date Compression Library Imploding
date and time fields: (2 bytes each)

The date and time are encoded in standard MS-DOS format. If
input came from standard input, the date and time are those
at which compression was started for this data.

CRC-32: (4 bytes)
The CRC-32 algorithm was generously contributed by David
Schwaderer and can be found in his excellent book "C
Programmers Guide to NetBIOS" published by Howard W.
Sams & Co. Inc. The 'magic number' for the CRC is
0xdebb20e3. The proper CRC pre and post conditioning is
used, meaning that the CRC register is pre-conditioned with all
ones (a starting value of 0xffffffff) and the value is post-
conditioned by taking the one's complement of the CRC
residual. If bit 3 of the general purpose flag is set, this field is
set to zero in the local header and the correct value is put in
the data descriptor and in the central directory.

compressed size: (4 bytes)
uncompressed size: (4 bytes)

A to Z of C

822

The size of the file compressed and uncompressed,
respectively. If bit 3 of the general purpose bit flag is set,
these fields are set to zero in the local header and the correct
values are put in the data descriptor and in the central
directory.

filename length: (2 bytes)
extra field length: (2 bytes)
file comment length: (2 bytes)

The length of the filename, extra field, and comment fields
respectively. The combined length of any directory record and
these three fields should not generally exceed 65,535 bytes. If
input came from standard input, the filename length is set to
zero.

disk number start: (2 bytes)
The number of the disk on which this file begins.

internal file attributes: (2 bytes)

The lowest bit of this field indicates, if set, that the file is
apparently an ASCII or text file. If not set, that the file
apparently contains binary data. The remaining bits are
unused in version 1.0.

external file attributes: (4 bytes)
The mapping of the external attributes is host-system
dependent (see 'version made by'). For MS-DOS, the low order
byte is the MS-DOS directory attribute byte. If input came
from standard input, this field is set to zero.

relative offset of local header: (4 bytes)

This is the offset from the start of the first disk on which this
file appears, to where the local header should be found.

filename: (Variable)
The name of the file, with optional relative path. The path
stored should not contain a drive or device letter, or a leading
slash. All slashes should be forward slashes '/' as opposed to
backwards slashes '\' for compatibility with Amiga and Unix file
systems etc. If input came from standard input, there is no
filename field.

extra field: (Variable)

This is for future expansion. If additional information needs to
be stored in the future, it should be stored here. Earlier
versions of the software can then safely skip this file, and find
the next file or header. This field will be 0 length in version
1.0.

 A to Z of C

823

In order to allow different programs and different types of
information to be stored in the 'extra' field in .ZIP files, the
following structure should be used for all programs storing
data in this field:

header1+data1 + header2+data2 . . .

Each header should consist of:

Header ID 2 bytes
Data Size 2 bytes

Note: all fields stored in Intel low-byte/high-byte order.

The Header ID field indicates the type of data that is in the
following data block.

Header ID's of 0 thru 31 are reserved for use by PKWARE. The
remaining ID's can be used by third party vendors for
proprietary usage.

The current Header ID mappings defined by PKWARE are:

0x0007 AV Info
0x0009 OS/2
0x000A NTFS
0x000c OpenVMS
0x000d Unix
0x000f Patch Descriptor
0x0014 PKCS#7 Store for X.509 Certificates
0x0015 X.509 Certificate ID and Signature for individual file
0x0016 X.509 Certificate ID for Central Directory

Several third party mappings commonly used are:

0x4b46 FWKCS MD5 (see below)
0x07c8 Macintosh
0x4341 Acorn/SparkFS
0x4453 Windows NT security descriptor (binary ACL)
0x4704 VM/CMS
0x470f MVS
0x4c41 OS/2 access control list (text ACL)
0x4d49 Info-ZIP OpenVMS
0x5455 extended timestamp
0x5855 Info-ZIP Unix (original, also OS/2, NT, etc)
0x6542 BeOS/BeBox
0x756e ASi Unix
0x7855 Info-ZIP Unix (new)

A to Z of C

824

0xfd4a SMS/QDOS

The Data Size field indicates the size of the following data
block. Programs can use this value to skip to the next header
block, passing over any data blocks that are not of interest.

Note: As stated above, the size of the entire .ZIP file header,
including the filename, comment, and extra field should not
exceed 64K in size.

In case two different programs should appropriate the same
Header ID value, it is strongly recommended that each
program place a unique signature of at least two bytes in size
(and preferably 4 bytes or bigger) at the start of each data
area. Every program should verify that its unique signature is
present, in addition to the Header ID value being correct,
before assuming that it is a block of known type.

-OS/2 Extra Field:
The following is the layout of the OS/2 attributes "extra" block.
(Last Revision 09/05/95)

Note: all fields stored in Intel low-byte/high-byte order.

Value Size Description
0x0009 2 bytes Tag for this "extra" block type
TSize 2 bytes Size for the following data block
BSize Long Uncompressed Block Size
CType 2 bytes Compression type
EACRC Long CRC value for uncompress block
(var) variable Compressed block

The OS/2 extended attribute structure (FEA2LIST) is
compressed and then stored in it's entirety within this
structure. There will only ever be one "block" of data in
VarFields[].

-UNIX Extra Field:

The following is the layout of the Unix "extra" block.

Note: all fields are stored in Intel low-byte/high-byte order.

Value Size Description
0x000d 2 bytes Tag for this "extra" block type
TSize 2 bytes Size for the following data block
Atime 4 bytes File last access time
Mtime 4 bytes File last modification time
Uid 2 bytes File user ID
Gid 2 bytes File group ID

 A to Z of C

825

(var) variable Variable length data field

The variable length data field will contain file type specific
data. Currently the only values allowed are the original "linked
to" file names for hard or symbolic links.

-OpenVMS Extra Field:
The following is the layout of the OpenVMS attributes "extra"
block.

Note: all fields stored in Intel low-byte/high-byte order.

Value Size Description
0x000c 2 bytes Tag for this "extra" block type
TSize 2 bytes Size of the total "extra" block
CRC 4 bytes 32-bit CRC for remainder of the block
Tag1 2 bytes VMS attribute tag value #1
Size1 2 bytes Size of attribute #1, in bytes
(var.) Size1 Attribute #1 data
.
.
.

TagN 2 bytes VMS attribute tage value #N
SizeN 2 bytes Size of attribute #N, in bytes
(var.) SizeN Attribute #N data

Rules:

1. There will be one or more of attributes present, which
will each be preceded by the above TagX & SizeX
values. These values are identical to the ATR$C_XXXX
and ATR$S_XXXX constants which are defined in
ATR.H under OpenVMS C. Neither of these values will
ever be zero.

2. No word alignment or padding is performed.

3. A well-behaved PKZIP/OpenVMS program should never
produce more than one sub-block with the same TagX
value. Also, there will never be more than one "extra"
block of type 0x000c in a particular directory record.

-NTFS Extra Field:

The following is the layout of the NTFS attributes "extra" block.

Note: At this time, the Mtime, Atime and Ctime values may be
used on any Win32 system.

Value Size Description

A to Z of C

826

0x000a 2 bytes Tag for this "extra" block type
TSize 2 bytes Size of the total "extra" block
Reserved 4 bytes Reserved for future use
Tag1 2 bytes NTFS attribute tag value #1
Size1 2 bytes Size of attribute #1, in bytes
(var.) Size1 Attribute #1 data
.
.
.

TagN 2 bytes NTFS attribute tage value #N
SizeN 2 bytes Size of attribute #N, in bytes
(var.) SizeN Attribute #N data

For NTFS, values for Tag1 through TagN are as follows:
(currently only one set of attributes is defined for NTFS)

Tag Size Description
0x0001 2 bytes Tag for attribute #1
Size1 2 bytes Size of attribute #1, in bytes
Mtime 8 bytes File last modification time
Atime 8 bytes File last access time
Ctime 8 bytes File creation time
-PATCH Descriptor Extra Field:
The following is the layout of the Patch Descriptor "extra"
block.

Note: all fields stored in Intel low-byte/high-byte order.

Value Size Description
0x000f 2 bytes Tag for this "extra" block type
TSize 2 bytes Size of the total "extra" block
Version 2 bytes Version of the descriptor
Flags 4 bytes Actions and reactions (see below)
OldSize 4 bytes Size of the file about to be patched
OldCRC 4 bytes 32-bit CRC of the file about to be patched
NewSize 4 bytes Size of the resulting file
NewCRC 4 bytes 32-bit CRC of the resulting file

Actions and reactions

Bits Description
0 Use for autodetection
1 Treat as selfpatch
2-3 RESERVED
4-5 Action (see below)
6-7 RESERVED

 A to Z of C

827

8-9 Reaction (see below) to absent file
10-11 Reaction (see below) to newer file
12-13 Reaction (see below) to unknown file
14-15 RESERVED
16-31 RESERVED

Actions

Action Value
none 0
add 1
delete 2
patch 3

Reactions

Reaction Value
ask 0
skip 1
ignore 2
fail 3
-PKCS#7 Store for X.509 Certificates
This field is contains the information about each certificate a
file is signed with. This field should only appear in the first
central directory record, and will be ignored in any other
record.

Note: all fields stored in Intel low-byte/high-byte order.

Value Size Description
0x0014 2 bytes Tag for this "extra" block type
SSize 2 bytes Size of the stored data
SData (variable)Data about the store

SData
Value Size Description
Version 2 bytes Version number, 0x0001 for now
StoreD (variable)Actual store data

The StoreD member is suitable for passing as the pbData
member of a CRYPT_DATA_BLOB to the CertOpenStore()
function in Microsoft's CryptoAPI. The SSize member above will
be cbData + 6, where cbData is the cbData member of the
same CRYPT_DATA_BLOB. The encoding type to pass to
CertOpenStore() should be
PKCS_7_ANS_ENCODING | X509_ASN_ENCODING.

-X.509 Certificate ID and Signature for individual file

A to Z of C

828

This field contains the information about which certificate in
the PKCS#7 Store was used to sign the particular file. It also
contains the signature data. This field can appear multiple
times, but can only appear once per certificate.

Note: all fields stored in Intel low-byte/high-byte order.

Value Size Description
0x0015 2 bytes Tag for this "extra" block type
CSize 2 bytes Size of Method
Method (variable)

Method
Value Size Description
Version 2 bytes Version number, 0x0001 for now
AlgID 2 bytes Algorithm ID used for signing
IDSize 2 bytes Size of Certificate ID data
CertID (variable)Certificate ID data
SigSize 2 bytes Size of Signature data
Sig (variable)Signature data

CertID
Value Size Description
Size1 4 bytes Size of CertID, should be (IDSize - 4)

Size1 4 bytes
A bug in version one causes this value to
appear twice.

IssSize 4 bytes Issuer data size
Issuer (variable) Issuer data
SerSize 4 bytes Serial Number size
Serial (variable)Serial Number data

The Issuer and IssSize members are suitable for creating a
CRYPT_DATA_BLOB to be the Issuer member of a CERT_INFO
struct. The Serial and SerSize members would be the
SerialNumber member of the same CERT_INFO struct. This
struct would be used to find the certificate in the store the file
was signed with. Those structures are from the MS CryptoAPI.

Sig and SigSize are the actual signature data and size
generated by signing the file with the MS CryptoAPI using a
hash created with the given AlgID.

-X.509 Certificate ID and Signature for central directory
This field contains the information about which certificate in
the PKCS#7 Store was used to sign the central directory. It
should only appear with the first central directory record, along

 A to Z of C

829

with the store. The data structure is the same as the CID,
except that SigSize will be 0, and there will be no Sig member.

This field is also kept after the last central directory record, as
the signature data (ID 0x05054b50, it looks like a central
directory record of a different type). This second copy of the
data is the Signature Data member of the record, and will have
a SigSize that is non-zero, and will have Sig data.

Note: all fields stored in Intel low-byte/high-byte order.

Value Size Description
0x0016 2 bytes Tag for this "extra" block type
CSize 2 bytes Size of Method
Method (variable)
- FWKCS MD5 Extra Field:
The FWKCS Contents_Signature System, used in automatically
identifying files independent of filename, optionally adds and
uses an extra field to support the rapid creation of an
enhanced contents_signature:

Header ID = 0x4b46
Data Size = 0x0013
Preface = 'M','D','5'

followed by 16 bytes containing the
uncompressed file's 128_bit MD5 hash(1), low
byte first.

When FWKCS revises a zipfile central directory to add this
extra field for a file, it also replaces the central directory entry
for that file's uncompressed filelength with a measured value.

FWKCS provides an option to strip this extra field, if present,
from a zipfile central directory. In adding this extra field,
FWKCS preserves Zipfile Authenticity Verification; if stripping
this extra field, FWKCS preserves all versions of AV through
PKZIP version 2.04g.

FWKCS, and FWKCS Contents_Signature System, are
trademarks of Frederick W. Kantor.

(1) R. Rivest, RFC1321.TXT, MIT Laboratory for Computer
Science and RSA Data Security, Inc., April 1992. ll.76-77: "The
MD5 algorithm is being placed in the public domain for review
and possible adoption as a standard."

file comment: (Variable)
The comment for this file.

A to Z of C

830

number of this disk: (2 bytes)

The number of this disk, which contains central directory end
record.

number of the disk with the start of the central directory: (2 bytes)

The number of the disk on which the central directory starts.

total number of entries in the central dir on this disk: (2 bytes)

The number of central directory entries on this disk.

total number of entries in the central dir: (2 bytes)
The total number of files in the zipfile.

size of the central directory: (4 bytes)
The size (in bytes) of the entire central directory.

offset of start of central directory with respect to the starting disk
 number: (4 bytes)

Offset of the start of the central directory on the disk on which
the central directory starts.

.ZIP file comment length: (2 bytes)

The length of the comment for this .ZIP file.

.ZIP file comment: (Variable)

The comment for this .ZIP file.

F. General notes:

1. All fields unless otherwise noted are unsigned and stored in Intel low-
byte:high-byte, low-word:high-word order.

2. String fields are not null terminated, since the length is given
explicitly.

3. Local headers should not span disk boundaries. Also, even though the
central directory can span disk boundaries, no single record in the
central directory should be split across disks.

4. The entries in the central directory may not necessarily be in the same
order that files appear in the .ZIP file.

5. Spanned/Split archives created using PKZIP for Windows (V2.50 or
greater), PKZIP Command Line (V2.50 or greater), or PKZIP Explorer
will include a special spanning signature as the first 4 bytes of the first
segment of the archive. This signature (0x08074b50) will be followed
immediately by the local header signature for the first file in the
archive. Spanned archives created with this special signature are
compatible with all versions of PKZIP from PKWARE. Split archives can

 A to Z of C

831

only be uncompressed by other versions of PKZIP that know how to
create a split archive.

III. UnShrinking - Method 1

Shrinking is a Dynamic Ziv-Lempel-Welch compression algorithm with partial clearing.
The initial code size is 9 bits, and the maximum code size is 13 bits. Shrinking differs
from conventional Dynamic Ziv-Lempel-Welch implementations in several respects:

a. The code size is controlled by the compressor, and is not automatically
increased when codes larger than the current code size are created (but not
necessarily used). When the decompressor encounters the code sequence 256
(decimal) followed by 1, it should increase the code size read from the input
stream to the next bit size. No blocking of the codes is performed, so the next
code at the increased size should be read from the input stream immediately
after where the previous code at the smaller bit size was read. Again, the
decompressor should not increase the code size used until the sequence 256,1
is encountered.

b. When the table becomes full, total clearing is not performed. Rather, when the
compressor emits the code sequence 256,2 (decimal), the decompressor
should clear all leaf nodes from the Ziv-Lempel tree, and continue to use the
current code size. The nodes that are cleared from the Ziv-Lempel tree are
then re-used, with the lowest code value re-used first, and the highest code
value re-used last. The compressor can emit the sequence 256,2 at any time.

IV. Expanding - Methods 2-5

The Reducing algorithm is actually a combination of two distinct algorithms. The first
algorithm compresses repeated byte sequences, and the second algorithm takes the
compressed stream from the first algorithm and applies a probabilistic compression
method.

The probabilistic compression stores an array of 'follower sets' S(j), for j=0 to 255,
corresponding to each possible ASCII character. Each set contains between 0 and 32
characters, to be denoted as S(j)[0],...,S(j)[m], where m<32. The sets are stored at
the beginning of the data area for a Reduced file, in reverse order, with S(255) first,
and S(0) last.

The sets are encoded as { N(j), S(j)[0],...,S(j)[N(j)-1] }, where N(j) is the size of set
S(j). N(j) can be 0, in which case the follower set for S(j) is empty. Each N(j) value is
encoded in 6 bits, followed by N(j) eight bit character values corresponding to S(j)[0]
to S(j)[N(j)-1] respectively. If N(j) is 0, then no values for S(j) are stored, and the
value for N(j-1) immediately follows.

Immediately after the follower sets, is the compressed data stream. The compressed
data stream can be interpreted for the probabilistic decompression as follows:

let Last-Character <- 0.

A to Z of C

832

loop until done
 if the follower set S(Last-Character) is empty then
 read 8 bits from the input stream, and copy this
 value to the output stream.
 otherwise if the follower set S(Last-Character) is non-empty then
 read 1 bit from the input stream.
 if this bit is not zero then
 read 8 bits from the input stream, and copy this
 value to the output stream.
 otherwise if this bit is zero then
 read B(N(Last-Character)) bits from the input
 stream, and assign this value to I.
 Copy the value of S(Last-Character)[I] to the output stream.
 assign the last value placed on the output stream to
 Last-Character.
end loop

B(N(j)) is defined as the minimal number of bits required to encode the value N(j)-1.

The decompressed stream from above can then be expanded to re-create the original
file as follows:

let State <- 0.

loop until done
 read 8 bits from the input stream into C.
 case State of
 0: if C is not equal to DLE (144 decimal) then
 copy C to the output stream.
 otherwise if C is equal to DLE then
 let State <- 1.

 1: if C is non-zero then
 let V <- C.
 let Len <- L(V)
 let State <- F(Len).
 otherwise if C is zero then
 copy the value 144 (decimal) to the output stream.
 let State <- 0

 2: let Len <- Len + C
 let State <- 3.

 3: move backwards D(V,C) bytes in the output stream
 (if this position is before the start of the output
 stream, then assume that all the data before the
 start of the output stream is filled with zeros).
 copy Len+3 bytes from this position to the output stream.
 let State <- 0.

 A to Z of C

833

 end case
end loop

The functions F,L, and D are dependent on the 'compression factor', 1 through 4, and
are defined as follows:

For compression factor 1:

L(X) equals the lower 7 bits of X.
F(X) equals 2 if X equals 127 otherwise F(X) equals 3.
D(X,Y) equals the (upper 1 bit of X) * 256 + Y + 1.

For compression factor 2:

L(X) equals the lower 6 bits of X.
F(X) equals 2 if X equals 63 otherwise F(X) equals 3.
D(X,Y) equals the (upper 2 bits of X) * 256 + Y + 1.

For compression factor 3:

L(X) equals the lower 5 bits of X.
F(X) equals 2 if X equals 31 otherwise F(X) equals 3.
D(X,Y) equals the (upper 3 bits of X) * 256 + Y + 1.

For compression factor 4:

L(X) equals the lower 4 bits of X.
F(X) equals 2 if X equals 15 otherwise F(X) equals 3.
D(X,Y) equals the (upper 4 bits of X) * 256 + Y + 1.

V. Imploding - Method 6

The Imploding algorithm is actually a combination of two distinct algorithms. The first
algorithm compresses repeated byte sequences using a sliding dictionary. The second
algorithm is used to compress the encoding of the sliding dictionary output, using
multiple Shannon-Fano trees.

The Imploding algorithm can use a 4K or 8K sliding dictionary size. The dictionary size
used can be determined by bit 1 in the general purpose flag word; a 0 bit indicates a
4K dictionary while a 1 bit indicates an 8K dictionary.

The Shannon-Fano trees are stored at the start of the compressed file. The number of
trees stored is defined by bit 2 in the general purpose flag word; a 0 bit indicates two
trees stored, a 1 bit indicates three trees are stored. If 3 trees are stored, the first
Shannon-Fano tree represents the encoding of the Literal characters, the second tree
represents the encoding of the Length information, the third represents the encoding
of the Distance information. When 2 Shannon-Fano trees are stored, the Length tree is
stored first, followed by the Distance tree.

A to Z of C

834

The Literal Shannon-Fano tree, if present is used to represent the entire ASCII
character set, and contains 256 values. This tree is used to compress any data not
compressed by the sliding dictionary algorithm. When this tree is present, the
Minimum Match Length for the sliding dictionary is 3. If this tree is not present, the
Minimum Match Length is 2.

The Length Shannon-Fano tree is used to compress the Length part of the
(length,distance) pairs from the sliding dictionary output. The Length tree contains 64
values, ranging from the Minimum Match Length, to 63 plus the Minimum Match
Length.

The Distance Shannon-Fano tree is used to compress the Distance part of the
(length,distance) pairs from the sliding dictionary output. The Distance tree contains
64 values, ranging from 0 to 63, representing the upper 6 bits of the distance value.
The distance values themselves will be between 0 and the sliding dictionary size,
either 4K or 8K.

The Shannon-Fano trees themselves are stored in a compressed format. The first byte
of the tree data represents the number of bytes of data representing the (compressed)
Shannon-Fano tree minus 1. The remaining bytes represent the Shannon-Fano tree
data encoded as:

High 4 bits: Number of values at this bit length + 1. (1 - 16)
Low 4 bits: Bit Length needed to represent value + 1. (1 - 16)

The Shannon-Fano codes can be constructed from the bit lengths using the following
algorithm:

a. Sort the Bit Lengths in ascending order, while retaining the order of the
original lengths stored in the file.

b. Generate the Shannon-Fano trees:

c. Code <- 0
d. CodeIncrement <- 0
e. LastBitLength <- 0
f. i <- number of Shannon-Fano codes - 1 (either 255 or 63)
g.
h. loop while i >= 0
i. Code = Code + CodeIncrement
j. if BitLength(i) <> LastBitLength then
k. LastBitLength=BitLength(i)
l. CodeIncrement = 1 shifted left (16 - LastBitLength)
m. ShannonCode(i) = Code
n. i <- i - 1

end loop

o. Reverse the order of all the bits in the above ShannonCode() vector, so that
the most significant bit becomes the least significant bit. For example, the
value 0x1234 (hex) would become 0x2C48 (hex).

 A to Z of C

835

p. Restore the order of Shannon-Fano codes as originally stored within the file.

Example:

This example will show the encoding of a Shannon-Fano tree of size 8.
Notice that the actual Shannon-Fano trees used for Imploding are
either 64 or 256 entries in size.

Example: 0x02, 0x42, 0x01, 0x13

The first byte indicates 3 values in this table. Decoding the bytes:

0x42 = 5 codes of 3 bits long
0x01 = 1 code of 2 bits long
0x13 = 2 codes of 4 bits long

This would generate the original bit length array of: (3, 3, 3, 3, 3, 2,
4, 4)

There are 8 codes in this table for the values 0 thru 7. Using the
algorithm to obtain the Shannon-Fano codes produces:

Val Sorted Constructed Code
Reversed

Value
Order

Restored
Original
Length

0: 2 1100000000000000 11 101 3
1: 3 1010000000000000 101 001 3
2: 3 1000000000000000 001 110 3
3: 3 0110000000000000 110 010 3
4: 3 0100000000000000 010 100 3
5: 3 0010000000000000 100 11 2
6: 4 0001000000000000 1000 1000 4
7: 4 0000000000000000 0000 0000 4

The values in the Val, Order Restored and Original Length columns now represent the
Shannon-Fano encoding tree that can be used for decoding the Shannon-Fano
encoded data. How to parse the variable length Shannon-Fano values from the data
stream is beyond the scope of this document. (See the references listed at the end of
this document for more information.) However, traditional decoding schemes used for
Huffman variable length decoding, such as the Greenlaw algorithm, can be
successfully applied.

The compressed data stream begins immediately after the compressed Shannon-Fano
data. The compressed data stream can be interpreted as follows:

loop until done
 read 1 bit from input stream.

 if this bit is non-zero then (encoded data is literal data)
 if Literal Shannon-Fano tree is present

A to Z of C

836

 read and decode character using Literal Shannon-Fano tree.
 otherwise
 read 8 bits from input stream.
 copy character to the output stream.
 otherwise (encoded data is sliding dictionary match)
 if 8K dictionary size
 read 7 bits for offset Distance (lower 7 bits of offset).
 otherwise
 read 6 bits for offset Distance (lower 6 bits of offset).

 using the Distance Shannon-Fano tree, read and decode the
 upper 6 bits of the Distance value.

 using the Length Shannon-Fano tree, read and decode
 the Length value.

 Length <- Length + Minimum Match Length

 if Length = 63 + Minimum Match Length
 read 8 bits from the input stream,
 add this value to Length.

 move backwards Distance+1 bytes in the output stream, and
 copy Length characters from this position to the output
 stream. (if this position is before the start of the output
 stream, then assume that all the data before the start of
 the output stream is filled with zeros).
end loop

VI. Tokenizing - Method 7

This method is not used by PKZIP.

VII. Deflating - Method 8

The Deflate algorithm is similar to the Implode algorithm using a sliding dictionary of
up to 32K with secondary compression from Huffman/Shannon-Fano codes.

The compressed data is stored in blocks with a header describing the block and the
Huffman codes used in the data block. The header format is as follows:

Bit 0: Last Block bit This bit is set to 1 if this is the last compressed block in the
data.

Bits 1-2:Block type
00 (0) - Block is stored - All stored data is byte aligned. Skip bits until next byte, then

next word = block length, followed by the ones compliment of the block
length word. Remaining data in block is the stored data.

01 (1) - Use fixed Huffman codes for literal and distance codes.
Lit Code Bits Dist Code Bits

0 - 143 8 0 - 31 5

 A to Z of C

837

144 - 255 9
256 - 279 7
280 - 287 8

Literal codes 286-287 and distance codes 30-31 are never used but
participate in the huffman construction.

10 (2) - Dynamic Huffman codes. (See expanding Huffman codes)
11 (3) - Reserved - Flag a "Error in compressed data" if seen.
Expanding Huffman Codes

If the data block is stored with dynamic Huffman codes, the Huffman codes are sent in
the following compressed format:

5 Bits: # of Literal codes sent - 256
All other codes are never sent

(256 - 286)

5 Bits: # of Dist codes - 1 (1 - 32)
4 Bits: # of Bit Length codes - 3 (3 - 19)

The Huffman codes are sent as bit lengths and the codes are built as described in the
implode algorithm. The bit lengths themselves are compressed with Huffman codes.
There are 19 bit length codes:

0 - 15:Represent bit lengths of 0 - 15
16:Copy the previous bit length 3 - 6 times.

The next 2 bits indicate repeat length (0 = 3, ... ,3 = 6)
Example: Codes 8, 16 (+2 bits 11), 16 (+2 bits 10) will
expand to 12 bit lengths of 8 (1 + 6 + 5)

17:Repeat a bit length of 0 for 3 - 10 times. (3 bits of length)
18:Repeat a bit length of 0 for 11 - 138 times (7 bits of length)

The lengths of the bit length codes are sent packed 3 bits per value (0 - 7) in the
following order:

16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15

The Huffman codes should be built as described in the Implode algorithm except codes
are assigned starting at the shortest bit length, i.e. the shortest code should be all 0's
rather than all 1's. Also, codes with a bit length of zero do not participate in the tree
construction. The codes are then used to decode the bit lengths for the literal and
distance tables.

The bit lengths for the literal tables are sent first with the number of entries sent
described by the 5 bits sent earlier. There are up to 286 literal characters; the first
256 represent the respective 8 bit character, code 256 represents the End-Of-Block
code, the remaining 29 codes represent copy lengths of 3 thru 258. There are up to 30
distance codes representing distances from 1 thru 32k as described below.

Length Codes
Code Extra Length CodeExtra Lengths Code Extra Lengths CodeExtra Length(s)

A to Z of C

838

Bits Bits Bits Bits
257 0 3 265 1 11,12 273 3 35-42 281 5 131-162
258 0 4 266 1 13,14 274 3 43-50 282 5 163-194
259 0 5 267 1 15,16 275 3 51-58 283 5 195-226
260 0 6 268 1 17,18 276 3 59-66 284 5 227-257
261 0 7 269 2 19-22 277 4 67-82 285 0 258
262 0 8 270 2 23-26 278 4 83-98
263 0 9 271 2 27-30 279 4 99-114
264 0 10 272 2 31-34 280 4 115-130

Distance Codes

Co
de

Extra
Bits DistanceCode

Extra
Bits DistanceCode

Extra
Bits Distance

Co
de

Extra
Bits Distance

0 0 1 8 3 17-24 16 7 257-384 24 11 4097-6144
1 0 2 9 3 25-32 17 7 385-512 25 11 6145-8192
2 0 3 10 4 33-48 18 8 513-768 26 12 8193-12288
3 0 4 11 4 49-64 19 8 769-1024 27 12 12289-16384
4 1 5,6 12 5 65-96 20 9 1025-1536 28 13 16385-24576
5 1 7,8 13 5 97-128 21 9 1537-2048 29 13 24577-32768
6 2 9-12 14 6 129-192 22 10 2049-3072
7 2 13-16 15 6 193-256 23 10 3073-4096

The compressed data stream begins immediately after the compressed header data.
The compressed data stream can be interpreted as follows:

do
 read header from input stream.

 if stored block
 skip bits until byte aligned
 read count and 1's compliment of count
 copy count bytes data block
 otherwise
 loop until end of block code sent
 decode literal character from input stream
 if literal < 256
 copy character to the output stream
 otherwise
 if literal = end of block
 break from loop
 otherwise
 decode distance from input stream

 move backwards distance bytes in the output stream, and
 copy length characters from this position to the
 output stream.
 end loop

 A to Z of C

839

while not last block

if data descriptor exists
 skip bits until byte aligned
 read crc and sizes
endif

VIII. Decryption

The encryption used in PKZIP was generously supplied by Roger Schlafly. PKWARE is
grateful to Mr. Schlafly for his expert help and advice in the field of data encryption.

PKZIP encrypts the compressed data stream. Encrypted files must be decrypted before
they can be extracted.

Each encrypted file has an extra 12 bytes stored at the start of the data area defining
the encryption header for that file. The encryption header is originally set to random
values, and then itself encrypted, using three, 32-bit keys. The key values are
initialized using the supplied encryption password. After each byte is encrypted, the
keys are then updated using pseudo-random number generation techniques in
combination with the same CRC-32 algorithm used in PKZIP and described elsewhere
in this document.

The following is the basic steps required to decrypt a file:

a. Initialize the three 32-bit keys with the password.

b. Read and decrypt the 12-byte encryption header, further initializing the
encryption keys.

c. Read and decrypt the compressed data stream using the encryption keys.

Step 1 - Initializing the encryption keys
Key(0) <- 305419896
Key(1) <- 591751049
Key(2) <- 878082192

loop for i <- 0 to length(password)-1
 update_keys(password(i))
end loop

Where update_keys() is defined as:

update_keys(char):
 Key(0) <- crc32(key(0),char)
 Key(1) <- Key(1) + (Key(0) & 000000ffH)
 Key(1) <- Key(1) * 134775813 + 1
 Key(2) <- crc32(key(2),key(1) >> 24)
end update_keys

A to Z of C

840

Where crc32(old_crc,char) is a routine that given a CRC value and a character, returns
an updated CRC value after applying the CRC-32 algorithm described elsewhere in this
document.

Step 2 - Decrypting the encryption header

The purpose of this step is to further initialize the encryption keys, based on random
data, to render a plaintext attack on the data ineffective.

Read the 12-byte encryption header into Buffer, in locations
 Buffer(0) thru Buffer(11).

loop for i <- 0 to 11
 C <- buffer(i) ^ decrypt_byte()
 update_keys(C)
 buffer(i) <- C
end loop

Where decrypt_byte() is defined as:

unsigned char decrypt_byte()
 local unsigned short temp
 temp <- Key(2) | 2
 decrypt_byte <- (temp * (temp ^ 1)) >> 8
end decrypt_byte

After the header is decrypted, the last 1 or 2 bytes in Buffer should be the high-order
word/byte of the CRC for the file being decrypted, stored in Intel low-byte/high-byte
order. Versions of PKZIP prior to 2.0 used a 2 byte CRC check; a 1 byte CRC check is
used on versions after 2.0. This can be used to test if the password supplied is correct
or not.

Step 3 - Decrypting the compressed data stream

The compressed data stream can be decrypted as follows:

loop until done
 read a character into C
 Temp <- C ^ decrypt_byte()
 update_keys(temp)
 output Temp
end loop

In addition to the above mentioned contributors to PKZIP and PKUNZIP, I would like to
extend special thanks to Robert Mahoney for suggesting the extension .ZIP for this
software.

References:

Fiala, Edward R., and Greene, Daniel H., "Data compression with finite
windows", Communications of the ACM, Volume 32, Number 4, April
1989, pages 490-505.

Held, Gilbert, "Data Compression, Techniques and Applications,
Hardware and Software Considerations", John Wiley & Sons, 1987.

 A to Z of C

841

Huffman, D.A., "A method for the construction of minimum-
redundancy codes", Proceedings of the IRE, Volume 40, Number 9,
September 1952, pages 1098-1101.

Nelson, Mark, "LZW Data Compression", Dr. Dobbs Journal, Volume
14, Number 10, October 1989, pages 29-37.

Nelson, Mark, "The Data Compression Book", M&T Books, 1991.

Storer, James A., "Data Compression, Methods and Theory", Computer
Science Press, 1988

Welch, Terry, "A Technique for High-Performance Data Compression",
IEEE Computer, Volume 17, Number 6, June 1984, pages 8-19.

Ziv, J. and Lempel, A., "A universal algorithm for sequential data
compression", Communications of the ACM, Volume 30, Number 6,
June 1987, pages 520-540.

Ziv, J. and Lempel, A., "Compression of individual sequences via
variable-rate coding", IEEE Transactions on Information Theory,
Volume 24, Number 5, September 1978, pages 530-536.

72.20 ZOO
 The ZOO archive program by Raoul Dhesi is a file compression program now
superceeded in both compression and speed by most other compression programs. The
archive header looks like this :

OFFSET Count TYPE Description
0000h 20 char Archive header text, ^Z terminated, null padded

0014h 1 dword ID=0FDC4A7DCh
0018h 1 dword Offset of first file in archive
001Ch 1 dword Offset of ????
0020h 1 byte Version archive was made by
0021h 1 byte Minimum version needed to extract

Each stored file has its own header, which looks like this :

OFFSET Count TYPE Description
0000h 1 dword ID=0FDC4A7DCh
0004h 1 byte Type of directory entry
0005h 1 byte Compression method :

0 - stored
1 - Crunched : LZW, 4K buffer,
 var len (9-13 bits)

0006h 1 dword Offset of next directory entry
000Ah 1 dword Offset of next header
000Dh 1 word Original date / time of file

A to Z of C

842

OFFSET Count TYPE Description
0012h 1 word CRC-16 of file
0014h 1 dword Uncompressed size of file
0018h 1 dword Compressed size of file
001Ch 1 byte Version this file was compressed by
001Dh 1 byte Minimum version needed to extract
001Eh 1 byte Deleted flag

0 - file in archive
1 - file is considered deleted

001Fh 1 dword Offset of comment field, 0 if none
0023h 1 word Length of comment field
0025h ? char ASCIIZ path / filename

