MEM 0040h:00CEh - COUNT OF DAYS SINCE LAST BOOT
Size: WORD
--------*-M004000D0--------------------------
MEM 0040h:00D0h - RESERVED
Size: 32 BYTES
--------S-M004000D0--------------------------
MEM 0040h:00D0h - Digiboard MV/4 - LENGTH OF DATA TABLE
Size: BYTE
--------d-M004000D0--------------------------
MEM 0040h:00D0h EHD floppy - INSTALLATION FLAGS
Size: BYTE

Bitfields for EHD floppy installation flags:
Bit(s) Description (Table M0051)
4 installation completed
3-0 drives 0-3
--------b-M004000D0--------------------------
MEM 0040h:00D1h - AMI BIOS v1.00.12.AX1T - EPP - SCRATCH SPACE
Size: WORD
Desc: this word holds the value of BX during an EPP BIOS call
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D5h"AMI",MEM 0040h:00D6h"AMI"
SeeAlso: MEM 0040h:00DDh"AMI"
--------S-M004000D1--------------------------
MEM 0040h:00D2h - Digiboard MV/4 - PRODUCT ID
Size: BYTE
--------S-M004000D2--------------------------
MEM 0040h:00D2h - Digiboard MV/4 - BASE ADDRESS FOUND
Size: WORD
--------b-M004000D2--------------------------
MEM 0040h:00D2h - AMI BIOS v1.00.12.AX1T - EPP BASE I/O PORT
Size: WORD
--------S-M004000D4--------------------------
MEM 0040h:00D4h - Digiboard MV/4 - PORTS
Size: BYTE
--------S-M004000D5--------------------------
MEM 0040h:00D5h - Digiboard MV/4 - IRQ
Size: BYTE
--------d-M004000D5--------------------------
MEM 0040h:00D5h EHD floppy - NUMBER OF FLOPPY DISK CONTROLLERS IN SYSTEM
Size: BYTE
--------b-M004000D5--------------------------
MEM 0040h:00D5h - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 0 CAPABILITIES
Size: BYTE
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D6h"AMI",MEM 0040h:00D7h"AMI"
SeeAlso: MEM 0040h:00DCh"AMI"
--------d-M004000D6--------------------------
MEM 0040h:00D6h EHD floppy - AND-BITS TO ADJUST PORT ADDRESS
Size: BYTE
Note: this byte contains FFh if controller at 03Fxh and 7Fh if at 037xh; the value is ANDed with DL prior to using IN A?,DX or OUT DX,A? instructions.

--- K-M004000D6 --------------------------
MEM 0040h:00D6h - Digiboard MV/4 - NUMBER OF KEYBOARDS FOUND
Size: WORD
SeeAlso: MEM 0040h:00D8h"Digiboard"

--- b-M004000D6 --------------------------
MEM 0040h:00D6h - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 0 IRQ
Size: BYTE
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D5h"AMI",MEM 0040h:00D8h"AMI"
SeeAlso: MEM 0040h:00DDh"AMI"

--- d-M004000D7 --------------------------
MEM 0040h:00D7h - EHD floppy - DRIVE 0 DISKETTE MEDIA STATE
Size: BYTE
Note: the value in this byte is copied into 0040h:0090h (diskette 0 status)
SeeAlso: MEM 0040h:00D8h"EHD",MEM 0040h:00D9h"EHD",MEM 0040h:00DAh"EHD"

Bitfields for EHD diskette media state:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
<th>Table M0052</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-6</td>
<td>data rate: 00=500kbps,01=300kbps,10=250k,11=1M/S</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>double stepping required (e.g. 360kB in 1.2MB)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>media type established</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>2-0</td>
<td>on exit from BIOS, contains: 000 trying 360kB in 360kB 001 trying 360kB in 1.2MB 010 trying 1.2MB in 1.2MB 011 360kB in 360kB established 100 360kB in 1.2MB established 101 1.2MB in 1.2MB established 110 reserved (2M8?) 111 all other formats/drives</td>
<td></td>
</tr>
</tbody>
</table>

--- b-M004000D7 --------------------------
MEM 0040h:00D7h - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 1 CAPABILITIES
Size: BYTE
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D5h"AMI",MEM 0040h:00D6h"AMI"
SeeAlso: MEM 0040h:00DDh"AMI"

--- M-M004000D8 --------------------------
MEM 0040h:00D8h - Digiboard MV/4 - NUMBER OF MICE FOUND
Size: WORD
SeeAlso: MEM 0040h:00D6h"Digiboard",MEM 0040h:00DAh"Digiboard"

--- d-M004000D8 --------------------------
MEM 0040h:00D8h - EHD floppy - DRIVE 1 DISKETTE MEDIA STATE
Size: BYTE
SeeAlso: MEM 0040h:00D7h"EHD",MEM 0040h:00D9h"EHD",MEM 0040h:00DAh"EHD"

--- b-M004000D8 --------------------------
MEM 0040h:00D8h - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 1 IRQ
728 A to Z of C

Size: BYTE
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D6h"AMI",MEM 0040h:00D7h"AMI"
SeeAlso: MEM 0040h:00DDh"AMI"
---------b-M004000D8--------------------------
MEM 0040h:00D8h U - Phoenix BIOS 4.0 Rel 6.0 - POWER MANAGEMENT FLAGS
Size: BYTE
SeeAlso: INT 15/AX=5300h
---------d-M004000D9--------------------------
MEM 0040h:00D9h - EHD floppy - DRIVE 2 DISKETTE MEDIA STATE
Size: BYTE
SeeAlso: MEM 0040h:00D7h"EHD",MEM 0040h:00D8h"EHD",MEM 0040h:00DAh"EHD"
---------S-M004000DA--------------------------
MEM 0040h:00DAh - Digiboard MV/4 - CURRENT PORT (used by VGA initializatn only)
Size: BYTE
SeeAlso: MEM 0040h:00D8h"Digiboard"
---------d-M004000DB--------------------------
MEM 0040h:00DBh - Digiboard MV/4 - MASTER 8259 MASK (used by VGA init only)
Size: BYTE
SeeAlso: MEM 0040h:00DCh"Digiboard"
---------d-M004000DC--------------------------
MEM 0040h:00DCh - Digiboard MV/4 - SLAVE 8259 MASK (used by VGA init only)
Size: BYTE
SeeAlso: MEM 0040h:00DCh"Digiboard"
---------b-M004000DC--------------------------
MEM 0040h:00DCh - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 0 MODE
Size: BYTE
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D5h"AMI",MEM 0040h:00DDh"AMI"
SeeAlso: INT 17/AX=0200h/BX=5050h

(Table M0053)
Values for AMI Enhanced Parallel Port mode:
01h compatibility mode
02h bi-directional mode
04h EPP mode
SeeAlso: #00637
---------d-M004000DC--------------------------
MEM 0040h:00DCh - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 0 MODE
Size: BYTE
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00D5h"AMI",MEM 0040h:00DDh"AMI"
SeeAlso: INT 17/AX=0200h/BX=5050h

---------d-M004000DC--------------------------
MEM 0040h:00DCh - EHD floppy - DRIVE 1 NEEDS RECALIBRATION
Size: BYTE
SeeAlso: MEM 0040h:00DBh"EHD",MEM 0040h:00DDh"EHD",MEM 0040h:00DEh"EHD"
MEM 0040h:00DCh - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT 1 MODE
Size: BYTE
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00DCh"AMI",#M0053
--------d-M004000DD--------------------------

MEM 0040h:00DDh - EHD floppy - DRIVE 2 NEEDS RECALIBRATION
Size: BYTE
SeeAlso: MEM 0040h:00DBh"EHD",MEM 0040h:00DCh"EHD",MEM 0040h:00DEh"EHD"
--------d-M004000DE--------------------------

MEM 0040h:00DEh - EHD floppy - DRIVE 3 NEEDS RECALIBRATION
Size: BYTE
SeeAlso: MEM 0040h:00DBh"EHD",MEM 0040h:00DCh"EHD",MEM 0040h:00DDh"EHD"
--------b-M004000DF--------------------------

MEM 0040h:00DFh - AMI BIOS v1.00.12.AX1T - EPP - PARALLEL PORT LOCK STATE
Size: BYTE
Note: set to 01h if last request was to lock a port, 00h if last request was to unlock a port
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00DCh"AMI"
--------b-M004000E0--------------------------

MEM 0040h:00E0h - AMI BIOS v1.00.12.AX1T - EPP - REAL-TIME DEVICE COUNT
Size: BYTE
Desc: contains the number of advertised real-time devices as set by EPP function 12h (see #00632)
SeeAlso: MEM 0040h:00D2h"AMI",MEM 0040h:00DFh"AMI"
--------b-M004000E0--------------------------

MEM 0040h:00E0h - Phoenix 386 BIOS - DRIVE PARAMETER TABLE FOR FIRST HARD DISK
Size: 16 BYTEs
Note: this area is used to store the driver parameter table for the first hard disk if it has been setup as the user-configurable "type 47"
--------d-M004000E3--------------------------

MEM 0040h:00E3h - EHD floppy - DRIVE 0 DISKETTE TYPE (from jumpers)
Size: BYTE
SeeAlso: MEM 0040h:00E4h,MEM 0040h:00E5h"EHD",MEM 0040h:00E6h"EHD"

(Table M0054)
Values for EHD floppy diskette type:
01h undefined by diskette change (360K)
02h 1.2M
03h 720K
04h 1.44M
05h 2.88M
--------d-M004000E4--------------------------

MEM 0040h:00E4h - EHD floppy - DRIVE 1 DISKETTE TYPE (from jumpers)
Size: BYTE
SeeAlso: MEM 0040h:00E3h,MEM 0040h:00E5h"EHD",MEM 0040h:00E6h"EHD"
--------d-M004000E5--------------------------

MEM 0040h:00E5h - EHD floppy - DRIVE 2 DISKETTE TYPE (from jumpers)
Size: BYTE
SeeAlso: MEM 0040h:00E3h,MEM 0040h:00E4h"EHD",MEM 0040h:00E6h"EHD"
MEM 0040h:00E5h - AWARD v4.51PG - ASSOC DRIVE NUMBERS TO PHYSICAL INTERFACES
Size: BYTE
SeeAlso: MEM 0040h:00B5h "Gigabyte"

Bitfields for drive number/interface mapping:
Bit(s) Description (Table M0128)
7-6 interface for drive 83h (F:)
 00 primary master
 01 primary slave
 10 secondary master
 11 secondary slave
5-4 interface for drive 82h (as for bits 7-6)
3-2 interface for drive 81h (as for bits 7-6)
1-0 interface for drive 80h (C:) (as for bits 7-6)
SeeAlso: #M0129

MEM 0040h:00E6h - EHD floppy - DRIVE 3 DISKETTE TYPE (from jumpers)
Size: BYTE
SeeAlso: MEM 0040h:00E3h, MEM 0040h:00E4h "EHD", MEM 0040h:00E5h "EHD"

MEM 0040h:00EAh - Omti controller - SEGMENT OF EXTENDED BIOS DATA AREA???
Size: WORD
Note: drive parameter tables stored in specified segment

MEM 0040h:00ECh - Dell 4xxDE BIOS A11 - LOOP COUNT FOR DELAYS
Size: WORD

MEM 0040h:00F0h - INTRA-APPLICATION COMMUNICATION AREA
Size: 16 BYTES

MEM 0050h:0001h - NEC PC-9800 series - SCREEN MODE
Size: BYTE
Note: if bit 3 set, the screen is in high-resolution mode (start memory at segment E000h instead of A000h)

MEM 0050h:0004h - MS-DOS - LOGICAL DRIVE FOR SINGLE-FLOPPY SYSTEM (A:/ B:)
Size: BYTE

MEM 0050h:0000h - STATE OF BREAK CHECKING AT START OF BASICA.COM EXECUTION
Size: BYTE

MEM 0050h:000Fh - BASICA VERSION FLAG
Size: BYTE
Note: this byte contains the value 02h if BASICA v2.10 is running
MEM 0050h:0010h - POINTER TO BASIC DATA SEGMENT
Size: WORD

MEM 0050h:0012h - INT 08 VECTOR AT START OF BASICA.COM EXECUTION
Size: DWORD

MEM 0050h:0016h - INT 1B VECTOR AT START OF BASICA.COM EXECUTION
Size: DWORD

MEM 0050h:001Ah - INT 24 VECTOR AT START OF BASICA.COM EXECUTION
Size: DWORD

MEM 0060h:0000h - DOS 2+ SCRATCH SPACE
Size: 256 BYTES
Note: used during DOS 2+ boot process

MEM 0060h:0000h - DOS 1.x IO.SYS LOAD ADDRESS

MEM 0070h:0000h - DOS 2+ IO.SYS LOAD ADDRESS

MEM 0070h:0100h - DOS 5+ - ORIGINAL INTERRUPT VECTORS 10h,13h,15h,19h,1Bh
Size: 25 BYTES
Note: each value is stored as a BYTE for the interrupt number followed by a DWORD for the vector
these values are restored on INT 19 by recent versions of DR/Novell/PC/MS-DOS (MS-DOS 3.x used this area to support HIMEM.SYS) not supported by OS/2 MDOS
SeeAlso: MEM 0080h:0000h,INT 2F/AH=13

MEM 0070h:016Ch - DR-DOS 7.02-7.03 - "DEVNO" AUX/PRN PORT ASSIGNMENTS
Size: 2 BYTES
016Ch BYTE PRN: assignment (0..2 for LPT1...LPT3: (3 for LPT4:); default: 1)
016Dh BYTE AUX: assignment (0..3 for COM1:..COM4:; default: 1)

Notes: As long as the built-in AUX: or PRN: drivers are in effect, these settings can be transparently reassigned at the DR-OpenDOS 7.02 / DR-DOS 7.03 DOS BIOS device driver level (that is below DOS redirection etc., but above ROM BIOS) using the undocumented CONFIG.SYS AUX=0|1..4 and PRN=0|1..3|4 directive, where 1..4 specifies COM1:..COM4: or LPT1:..LPT4: and the high speed bypass 0 selects the previous hardwired equivalence of AUX: with COM1: and PRN: with LPT1: at this level, saving a few clock cycles. The system defaults to AUX=1 and PRN=1 (that is 0 in the internal variables). If the high speed bypass was not enabled, the assignment can be changed anytime later by updating these bytes, e.g. by a future issue of the MODE utility. If the highspeed bypass has been enabled, changes have
The LPT4 setting (or corresponding value 3) is valid for DR-OpenDOS 7.02 and DR-DOS 7.02, but due to a bug introduced with the partial removal of the LPT4: device, it must not be used under DR-DOS 7.03.

The address 0070h:016Ch is only valid for DR-OpenDOS 7.02 up to DR-DOS 7.03 (BDOS 73h), and will most probably change with future releases of DR-DOS!

These bytes are local for each task running.

SeeAlso: INT 21h/03h, INT 21h/04h, INT 21h/05h, MEM 0040h:0000h etc.

--------H-M00800000--------------------------
MEM 0080h:0000h - 80286 CPU - LOADALL WORKSPACE
Size: 102 BYTEs
Desc: on the 80286 (unlike 80386), the state buffer from which the LOADALL instruction loads all internal registers is hardwired to physical address 000800h

Note: several versions 3.x of MS-DOS leave an empty space at offset 100h in IO.SYS (which is loaded at 0070h:0000h) so that HIMEM.SYS can use LOADALL on 80286 machines without having to save/restore the area of memory that LOADALL uses

SeeAlso: MEM 0070h:0100h

--------m-m80C00000--------------------------
MEM 80C00000h - Compaq Deskpro 386 system memory board register
Size: BYTE

80C00000 R Diagnostics register (see #M0055)
80C00000 W RAM relocation register (see #M0056)

Bitfields for Compaq Deskpro 386 diagnostics register:
Bit(s) Description (Table M0055)
7 =0 memory expansion board is installed
6 =0 second 1 MB of system memory board is installed
5-4 base memory
 00 set to 640 KB
 01 invalid
 10 set to 512 KB
 11 set to 256 KB
3 parity correct in byte 3
2 parity correct in byte 2
1 parity correct in byte 1
0 parity correct in byte 0 (in 32-bit double word)

SeeAlso: #M0056

Bitfields for Compaq Deskpro 386 RAM relocation register:
Bit(s) Description (Table M0056)
7-2 reserved, always write 1's.
1 =0 Write-protect 128-Kbyte RAM at FE0000.
 =1 Do not write-protect RAM at FE0000.
0 =0 Relocate 128-Kbyte block at FE0000 to address 0E0000
 =1 128-Kbyte RAM is addressed only at FE0000.
SeeAlso: #M0055
--------m80C00000--------------------------
MEM 80C00000h - COMPAQ DIAGNOSTICS REGISTER
Size: WORD
Note: Writing to F000h:FFE0h seems to involve unlocking the memory by writing
 FEFEh to this address first. The write-protection can be
 reestablished by writing FCFCh to this address??? This was seen done
 by MS HIMEM.SYS.
SeeAlso: F000h:FFE0h

Bitfields for Compaq Diagnostics Register:
Bit(s) Description (Table M0132)
15-10 unknown purpose (should remain set???)
 =1 memory is read-write???
 =0 memory is read-only???
 9 =1 to disable ROM replacement???
 =0 normal???
 8 =1 to disable ROM replacement???
 =0 normal
Note: Writing to F000h:FFE0h seems to involve unlocking the memory by writing
 FEFEh to this address first. The write-protection can be
 reestablished by writing FCFCh to this address???
 Microsoft HIMEM.SYS was seen to do this.
SeeAlso: F000h:FFE0h
--------V-MA0000000--------------------------
MEM A000h:0000h - EGA+ GRAPHICS BUFFER
Size: 65536 BYTES
--------V-MA0000000--------------------------
MEM A000h:0000h - S3 - MEMORY-MAPPED GRAPHICS PROCESSOR REGISTERS
Size: 65536 BYTES
Note: the S3 graphics processor registers can be mapped at either
 linear 000A0000h or at offset 16M from the start of the linear
 frame buffer
--------V-MA0001234--------------------------
MEM A000h:1234h - S3 - MEMORY-MAPPED ???
Size: WORD???
Note: the Win95 driver for the Stealth64 tests various bits in this word,
 sometimes looping until a particular bit is set or cleared
--------V-MA0008000--------------------------
MEM A000h:8000h - S3 - MEMORY-MAPPED PCI CONFIGURATION REGISTERS
Size: 256 BYTES
Notes: the S3 graphics processor registers can be mapped at either
 linear 000A0000h or at offset 16M from the start of the linear
frame buffer
additional setup may be required to access these registers via memory
the DWORDs at 8080h,8088h,808Ch,8090h,8094h,8098h,809Ch are used by
STLTH64.DRV
the DWORDs at 18080h,18088h,18090h,18094h,18098h,1809Ch are written
by S3_32.DLL

MEM A000h:8100h - S3 - MEMORY-MAPPED PACKED REGISTERS
Size: 80 BYTES
Access: Write-Only
Desc: these registers pack two 16-bit I/O registers into a single DWORD
for faster writes
Note: the S3 graphics processor registers can be mapped at either
linear 000A0000h or at offset 16M from the start of the linear
frame buffer
SeeAlso: MEM A000h:8180h

Format of S3 Trio32/Trio64 packed memory-mapped registers:
Offset Size Description (Table M0057)
8100h DWORD drawing control: row (low word), column (high word)
"CUR_X" and "CUR_Y" (see PORT 82E8h,PORT 86E8h)
8104h DWORD (Trio64) drawing control: row 2 (low word), column 2 (high word)
8108h DWORD drawing control: destination Y and axial step constant (low
word), destination X and axial step constant (high word)
(see PORT 8AE8h,PORT 8EE8h)
810Ch DWORD (Trio64 only) destination Y 2 and axial step constant 2 (low
word), destination X 2 and axial step constant 2 (high word)
(see PORT 8AEAh,PORT 8EEAh)
8110h WORD error term (see PORT 92E8h)
8112h WORD (Trio64) error term 2 (see PORT 92EAh)
8114h DWORD unused??? (would correspond to PORT 96E8h)
8118h WORD drawing control: command register (see PORT 9AE8h)
811Ah WORD (Trio64) command register 2 (see PORT 9AEAh)
811Ch DWORD short stroke (see PORT 9EE8h)
8120h DWORD background color (see PORT A2E8h)
8124h DWORD foreground color (see PORT A6E8h)
8128h DWORD write mask (see PORT AAE8h)
812Ch DWORD read mask (see PORT AEE8h)
8130h DWORD color compare (see PORT B2E8h)
8134h DWORD background mix (low word) and foreground mix (high word)
(see PORT B6E8h,PORT BAE8h)
8138h DWORD top scissors (low word) and left scissors (high word)
(see PORT BEE8h,#P1047)
813Ch DWORD bottom scissors (low word) and right scissors (high word)
(see PORT BEE8h,#P1047)
8140h DWORD data manipulation control (low word) and miscellaneous 2 (high
word) (see PORT BEE8h,#P1047)
8144h DWORD miscellaneous (low word) and read register select (high word)
A to Z of C 735

(see PORT BEE8h,#P1047)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8148h</td>
<td>DWORD</td>
<td>minor axis pixel count (low word) and major axis pixel count (high word)</td>
</tr>
<tr>
<td>814Ch</td>
<td>WORD</td>
<td>(Trio64) major axis pixel count 2</td>
</tr>
<tr>
<td>8150h</td>
<td>DWORD</td>
<td>pixel data transfer</td>
</tr>
<tr>
<td>8154h</td>
<td>4 DWORDs</td>
<td>??</td>
</tr>
<tr>
<td>8164h</td>
<td>DWORD</td>
<td>??? (written by STLTH64.DRV for Win95)</td>
</tr>
<tr>
<td>8168h</td>
<td>DWORD</td>
<td>(Trio64 only) Pattern Y (low word), Pattern X (high word)</td>
</tr>
<tr>
<td>816Ch</td>
<td>DWORD</td>
<td>??? (written by STLTH64.DRV for Win95)</td>
</tr>
</tbody>
</table>

Note: setting 8138h to 0 and 813Ch to 12345678h may be a magic value to unlock some S3 features

SeeAlso: #M0073,#M0070

--------V-MA0008180--------------------------
MEM A000h:8180h - S3 - STREAMS PROCESSOR
Size: 128 BYTES

Note: the S3 graphics processor registers can be mapped at either linear 000A0000h or at offset 16M from the start of the linear frame buffer

SeeAlso: MEM A000h:8100h,MEM A000h:FF00h

Format of S3 Streams Processor memory-mapped registers:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8180h</td>
<td>DWORD</td>
<td>primary stream control (see #M0059)</td>
</tr>
<tr>
<td>8184h</td>
<td>DWORD</td>
<td>chroma key control (see #M0063)</td>
</tr>
<tr>
<td>8188h</td>
<td>DWORD</td>
<td>unused?? (high word seems to echo 8184h, low word 8180h)</td>
</tr>
<tr>
<td>818Ch</td>
<td>DWORD</td>
<td>unused?? (high word seems to echo 8184h, low word 8180h)</td>
</tr>
<tr>
<td>8190h</td>
<td>DWORD</td>
<td>secondary stream control (see #M0061)</td>
</tr>
<tr>
<td>8194h</td>
<td>DWORD</td>
<td>chroma key upper bound (bits 23-0) (see also #M0063)</td>
</tr>
<tr>
<td>8198h</td>
<td>DWORD</td>
<td>secondary stream stretch (see #M0062)</td>
</tr>
<tr>
<td>819Ch</td>
<td>DWORD</td>
<td>?? (set by S3_32.DLL)</td>
</tr>
</tbody>
</table>

 | bits 30-16: ?? |
 | bits 14-0: ?? |
81A0h	DWORD	blend control (see #M0064)
81A4h	3 DWORDs	unused?? (reads as FFFFFFFFh)
81B0h	4 DWORDs	?? (appear to be read-only)
81C0h	DWORD	primary frame buffer address 0 (bits 21-0, multiple of 8)
81C4h	DWORD	primary frame buffer address 1 (bits 21-0, multiple of 8)
81C8h	DWORD	primary stream stride (bits 11-0 only)
81CCh	DWORD	double buffer/LPB control (see #M0065)
81D0h	DWORD	secondary frame buffer address 0 (bits 21-0, multiple of 8)
81D4h	DWORD	secondary frame buffer address 1 (bits 21-0, multiple of 8)
81D8h	DWORD	secondary stream stride (bits 11-0 only)
81DCh	DWORD	opaque overlay control (see #M0066)
81E0h	DWORD	K1 -- vertical stretch (lines in) (bits 10-0 only)
		set to one less than # lines in
81E4h	DWORD	K2 -- vertical stretch (stretch factor) (bits 10-0 only)
		set to -(#lines_in - #lines_out)
81E8h DWORD DDA vertical accumulator (bits 11-0 only) (lines out) set to (#lines_out) - 1
81ECh DWORD streams FIFO and RAS control (see #M0067)
81F0h DWORD primary start coordinate (see #M0068)
81F4h DWORD primary window size (see #M0069)
81F8h DWORD secondary start coordinate (see #M0068)
81FCb DWORD secondary window size (see #M0069)

Note: changes to registers 81E0h-81E8h do not take effect until the next VSYNC

SeeAlso: #M0073,#M0057,#M0070

Bitfields for S3 Streams Processor primary stream control:
Bit(s) Description (Table M0059)
31 reserved
30-28 filter characteristics
000 unchanged primary stream
001 2X stretch by replicating pixels
010 2X stretch by interpolating horizontally (replicating vertically)
else reserved
27 reserved
26-24 color mode (see #M0060)
23-0 officially reserved, but writing nonzero values can hang display

Notes: the primary stream is the output from the display RAM bits 26-24 correspond to CR67 color mode field (see #P0688)

SeeAlso: #M0058,#M0061

Values for S3 Streams Processor color mode:
000b eight bits per pixel
001b YCrCb 4:2:2 unsigned, range 10h-F0h (secondary stream only)
010b YUV 4:2:2, range 00h-FFh (secondary stream only)
011b keyed high-color (1-5-5-5)
100b YUV 2:1:1 two's complement (secondary stream only)
101b high-color (5-6-5)
110b reserved
111b true-color (32bpp, high byte ignored)

SeeAlso: #M0059,#M0061

Bitfields for S3 Streams Processor secondary stream control:
Bit(s) Description (Table M0061)
31 reserved
30-28 filter characteristics
000 unchanged secondary stream
001 linear 0-2-4-2-0 for 1x-2x stretch
010 bi-linear for 2x-4x stretch
011 linear 1-2-2-2-1 for 4x+ stretch
else reserved
28 enable smoothing between horizontally adjacent bits (trial-and-error)
27 reserved
26-24 color mode (see #M0060,#M0074)
23-12 reserved
11-0 initial value of DDA horizontal accumulator
 set to 2*(inwidth-1)-(outwidth-1)
Notes: the secondary stream is typically live video, but can be pointed at
 any part of video memory
 changes to this register do not take effect until the next VSYNC
SeeAlso: #M0058,#M0059,#M0062

Bitfields for S3 Streams Processor stretch/filter constants:
Bit(s) Description (Table M0062)
31-27 reserved
26-16 K2 horizontal scaling factor (input width - output width)
15-11 reserved
10-0 K1 horizontal scaling factor (input width - 1)
Note: changes to this register do not take effect until the next VSYNC
SeeAlso: #M0061

Bitfields for S3 Streams Processor chroma-key control:
Bit(s) Description (Table M0063)
31-29 reserved
28 key control
 =1 normal color-key or chroma-key
 =0 (keyed RGB 1-5-5-5 mode only) extract key from high bit of input
 stream; if key bit is clear, show pixel from other stream
27 reserved
26-24 color comparison precision
 000 compare bit 7 of R,G, and B values only
 001 compare bits 7-6
 ...
 111 compare bits 7-0
23-0 chroma-key color value
 23-16 = red or Y
 15-8 = green or U/Cb
 7-0 = blue or V/Cr
Note: if the keyed stream is YUV or YCrCb, then this register contains the
 lower bound and 8194h contains the upper bound of the chromakey
 value
SeeAlso: #M0058

Bitfields for S3 Streams Processor blend control:
Bit(s) Description (Table M0064)
31-27 reserved (unused)
26-24 blend type
 000 show secondary stream (video) overlaying primary stream
 001 show primary stream overlaying secondary stream
 010 blend pri/sec. streams (dissolve, secondary intensity = full-prim.)
011 blend pri/sec. streams
100 reserved (blank display)
101 show secondary stream only where chroma-key color present
110 show secondary stream (video) unconditionally
111 reserved (blank display)

23-14 reserved
13 ??? (officially reserved, but set by S3_32.DLL)
12-8 primary stream intensity (00h-1Ch, must be multiple of 4)
4-0 secondary stream intensity (00h-1Ch, must be multiple of 4)

(ignored for blend type 010)

Notes: for blend type 011, the primary and secondary stream intensities should
not total more than 20h to avoid wraparounds which appear as
incorrect colors; for blend type 010, the secondary stream intensity
is automatically computed as 20h - bits12-8
changes to this register do not take effect until the next VSYNC

SeeAlso: #M0058

Bitfields for S3 Streams Processor double-buffer/LPB control:

Bit(s) Description (Table M0065)
31-7 reserved (unused; all but bit 7 appear to be read-only, as well)
6 LPB frame buffer auto-toggle
 if set, End-of-Frame toggles bit 4
5 delay loading LPB input buffer select until next End-of-Frame
4 LPB input buffer select (see #M0073)
 0 use LPB frame buffer address 0 (FF0Ch) for incoming video data
 1 use LPB frame buffer address 1 (FF10h)
3 reserved
2-1 secondary stream buffer select
 00 use frame buffer address 0 (81D0h)
 01 use frame buffer address 1 (81D4h)
 1x use frame buffer 0/1 (81D0h/81D4h) selected by bit 4 for secondary
 stream and selected LPB frame buffer for LPB input
0 primary stream buffer select
 =0 use frame buffer address 0 (81C0h)
 =1 use frame buffer address 1 (81C4h)

SeeAlso: #M0058,#M0073

Bitfields for S3 Streams Processor opaque overlay control:

Bit(s) Description (Table M0066)
31 enable opaque overlay control
30 select top stream (0 = secondary on top, 1 = primary)
29 reserved
28-19 pixel resume fetch
 number of quadwords from background's left edge to position at which
 to start fetching pixels again
18-13 reserved
12-3 pixel stop fetch
 number of quadwords from background's left edge to position at which
to stop fetching pixels

2-0 reserved

SeeAlso: #M0058

Bitfields for S3 Streams Processor streams FIFO and RAS control register:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
<th>(Table M0067)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-22</td>
<td>reserved (0)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>skip 0.5 MCLK delay of PD[63:0] output (default = 0)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>skip memory arbitration for ROM cycles (default = 0)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>do not tristate PD[63:16] during ROM cycles (default = 0) (set by Win95 driver when using ISA bus)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>EDO wait state control (LPB memory cycles only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=0 two-cycle accesses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=1 one-cycle EDO accesses</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RAS# pre-charge control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=0 use CR68(bit3) setting (2.5/3.5 MCLKs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=1 1.5 MCLKs</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>RAS# low control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=0 use CR68(bit2) setting (3.5/4.5 MCLKs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=1 2.5 MCLKs</td>
<td></td>
</tr>
<tr>
<td>14-10</td>
<td>primary stream FIFO threshold</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of filled quadword slots at which to request refilling</td>
<td></td>
</tr>
<tr>
<td>9-5</td>
<td>secondary stream FIFO threshold</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number of filled quadword slots at which to request refilling</td>
<td></td>
</tr>
<tr>
<td>4-0</td>
<td>FIFO allocation, in quadword slots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00000 primary stream = 24, secondary = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01000 primary stream = 16, secondary = 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01100 primary stream = 12, secondary = 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10000 primary stream = 8, secondary = 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11000 primary stream = 0, secondary = 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>else reserved</td>
<td></td>
</tr>
</tbody>
</table>

SeeAlso: #M0058

Bitfields for S3 Streams Processor start coordinate:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
<th>(Table M0068)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-27</td>
<td>reserved (read-only)</td>
<td></td>
</tr>
<tr>
<td>26-16</td>
<td>X coordinate (column) of upper left corner, plus 1</td>
<td></td>
</tr>
<tr>
<td>15-11</td>
<td>reserved (read-only)</td>
<td></td>
</tr>
<tr>
<td>10-0</td>
<td>Y coordinate (row) of upper left corner, plus 1</td>
<td></td>
</tr>
</tbody>
</table>

SeeAlso: #M0058,#M0069

Bitfields for S3 Streams Processor window size:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
<th>(Table M0069)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-27</td>
<td>reserved (read-only)</td>
<td></td>
</tr>
<tr>
<td>26-16</td>
<td>width in pixels - 1</td>
<td></td>
</tr>
<tr>
<td>15-11</td>
<td>reserved (read-only)</td>
<td></td>
</tr>
<tr>
<td>10-0</td>
<td>height in scan lines</td>
<td></td>
</tr>
</tbody>
</table>
MEM A000h:8200h - S3 ViRGE - MEMORY-MAPPED MEMORY-PORT CONTROL REGISTERS
Size: 40 BYTES
Note: the S3 graphics processor registers can be mapped at either linear 000A0000h or at offset 16M from the start of the linear frame buffer

Format of S3 memory-mapped port control registers:
Offset Size Description (Table M0070)
8200h DWORD FIFO control
8204h DWORD MIU control
8208h DWORD streams timeout
820Ch DWORD miscellaneous timeout
8210h 4 DWORDs ???
8220h DWORD DMA read base address
8224h DWORD DMA read stride width
SeeAlso: #M0057

MEM A000h:82E8h - S3 - MEMORY-MAPPED CURRENT Y POSITION REGISTER
Size: WORD
Note: the S3 graphics processor registers can be mapped at either linear 000A0000h or at offset 16M from the start of the linear frame buffer
SeeAlso: PORT 82E8h

MEM A000h:83B0h - S3 - MEMORY-MAPPED VGA REGISTERS
Size: 48 BYTES
Note: the S3 graphics processor registers can be mapped at either linear 000A0000h or at offset 16M from the start of the linear frame buffer
SeeAlso: PORT 03B0h,PORT 03C0h,PORT 03D0h

MEM A000h:8504h - S3 ViRGE - MEMORY-MAPPED SUBSYSTEM REGISTERS
Size: 12 BYTES
Note: the S3 graphics processor registers can be mapped at either linear 000A0000h or at offset 16M from the start of the linear frame buffer

Format of S3 memory-mapped subsystem registers:
Offset Size Description (Table M0071)
8504h DWORD subsystem Control/Status Register (see PORT 42E8h,PORT 9AE8h) on read: bit 13 indicates whether graphics processor is busy bits 12-8 indicate number of free FIFO slots
8508h DWORD ???
850Ch DWORD advanced function control (see PORT 4AE8h)
SeeAlso: #M0073,#M0057,#M0072
MEM A000h:8580h - S3 - MEMORY-MAPPED DMA REGISTERS
Size: 32 BYTES
Note: the S3 graphics processor registers can be mapped at either
linear 000A0000h or at offset 16M from the start of the linear
frame buffer

Format of S3 memory-mapped DMA registers:
Offset Size Description (Table M0072)
8580h DWORD start address in system memory
8584h DWORD transfer length
8588h DWORD transfer enable
858Ch DWORD ???
8590h DWORD DMA base address
8594h DWORD DMA write pointer
8598h DWORD DMA read pointer
859Ch DWORD DMA enable
SeeAlso: #M0057,#M0073

MEM A000h:86E8h - S3 - MEMORY-MAPPED ENHANCED REGISTERS
Size: ? BYTES
Note: the S3 graphics processor registers can be mapped at either
linear 000A0000h or at offset 16M from the start of the linear
frame buffer

MEM A000h:A000h - S3 - MEMORY-MAPPED COLOR PALETTE REGISTERS
Size: 448 BYTES
Note: the S3 graphics processor registers can be mapped at either
linear 000A0000h or at offset 16M from the start of the linear
frame buffer

MEM A000h:A4D4h - S3 - MEMORY-MAPPED BLT-FILL REGISTERS
Size: 60 BYTES
Note: the S3 graphics processor registers can be mapped at either
linear 000A0000h or at offset 16M from the start of the linear
frame buffer

A4D4h DWORD ???
A4D8h DWORD ???
A4DCh DWORD ??? (set to 07FFh by S3_32.DLL)
A4E0h DWORD ??? (set to 07FFh by S3_32.DLL)
A4E4h DWORD ???
A4E8h DWORD ???
A4ECoh DWORD ???
A4F0h
A4F4h DWORD ???
A4F8h
A4FCh DWORD ???
A to Z of C

A500h DWORD ???
A504h DWORD ???
A508h DWORD ???
A50Ch DWORD ???
--------V-MA000A8D4--------------------------
MEM A000h:8D4h - S3 - MEMORY-MAPPED LINE REGISTERS
Size: 172 BYTEs
Note: the S3 graphics processor registers can be mapped at either
 linear 000A0000h or at offset 16M from the start of the linear
 frame buffer
--------V-MA000ACD4--------------------------
MEM A000h:ACD4h - S3 - MEMORY-MAPPED POLYGON-FILL REGISTERS
Size: 172 BYTEs
Note: the S3 graphics processor registers can be mapped at either
 linear 000A0000h or at offset 16M from the start of the linear
 frame buffer
--------V-MA000B0D4--------------------------
MEM A000h:B0D4h - S3 - MEMORY-MAPPED 3D-LINE REGISTERS
Size: 172 BYTEs
Note: the S3 graphics processor registers can be mapped at either
 linear 000A0000h or at offset 16M from the start of the linear
 frame buffer
--------V-MA000B4D4--------------------------
MEM A000h:B4D4h - S3 - MEMORY-MAPPED 3D-TRIANGLE REGISTERS
Size: 172 BYTEs
Note: the S3 graphics processor registers can be mapped at either
 linear 000A0000h or at offset 16M from the start of the linear
 frame buffer
--------V-MA000FF00--------------------------
MEM A000h:FF00h - S3 - MEM-MAPPED "SCENIC HIGHWAY" (Local Periph. Bus) ACCESS
Size: 64 DWORDs
Note: the S3 graphics processor registers can be mapped at either
 linear 000A0000h or at offset 16M from the start of the linear
 frame buffer
SeeAlso: MEM A000h:8180h

Format of S3 Local Peripheral Bus memory-mapped registers:
Offset Size Description
FF00h DWORD LPB mode (see #M0074)
FF04h DWORD LPB FIFO status (see #M0075)
FF08h DWORD interrupt status (see #M0076)
FF0Ch DWORD frame buffer address 0 (bits 21-0, multiple of 8)
 offset within frame buffer at which to store incoming data from
 LPB when Streams Processor double-buffer control (see #M0065)
 bit 4 clear
FF10h DWORD frame buffer address 1 (bits 21-0, multiple of 8)
 offset within frame buffer at which to store incoming data from
 LPB when Streams Processor double-buffer control (see #M0065)
bit 4 is set

FF14h DWORD "direct address" = index for FF18h (see #M0077)
FF18h DWORD "direct data" (see #M0077)

Note: the direct address/direct data registers presumably rely on the attached device inserting data into the digital video stream, as on a Diamond Stealth64 Video, the "direct data" appears to reflect the video stream data (i.e. it varies, but with a pattern that depends on the video image, and stops varying when video is frozen)

FF1Ch DWORD general purpose I/O (see #M0078)
FF20h DWORD LPB serial port -- I2C/DDC access (see #M0079)
FF24h DWORD input window size (high word = rows, low word = columns)
FF28h DWORD data offsets
(video alignment; high word = rows; low word = columns)
FF2Ch DWORD horizontal decimation
bits 0-31 set indicate that bytes 0-31 (mod 32) of each line should be dropped (in Video16 mode, each bit controls a WORD); decimation is aligned with the start of line as specified by the data offsets at FF28h

FF30h DWORD vertical decimation
bits 0-31 set indicate that lines 0-31 (mod 32) should be dropped, i.e. setting this DWORD to 55555555h will drop every other line; decimation starts with VSYNC regardless of the data offsets specified at FF28h

FF34h DWORD line stride (number of bytes between starts of successive lines of video data) must be multiple of 4 -- lowest two bits forced to 0

FF38h 3 DWORDs unused?? (seem to echo FF34h)
FF40h 8 DWORDs LPB output FIFO - data transfer writing to ANY of these DWORDs transfers a value to the FIFO; this organization allows use of a REP MOVSD instruction to fill the FIFO on ISA bus, there must be a delay between successive writes

SeeAlso: #M0058

Bitfields for S3 Local Peripheral Bus LPB Mode register:
Bit(s) Description (Table M0074)

0 enable LPB
3-1 LPB operational mode
 000 Scenic/MX2
 001 Video 16 (PCI only)
 010 Video 8 In
 used by Philips SAA7110/SAA7111 and Diamond's DTV1100
 011 Video 8 In/Out
 used by CL-480
 100 Pass-Through
 send FIFO data written by CPU through the decimation logic
else reserved (Trio64V+)
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>LBP Reset</td>
</tr>
<tr>
<td></td>
<td>pulse this bit before changing operational mode</td>
</tr>
<tr>
<td>5</td>
<td>skip every other frame</td>
</tr>
<tr>
<td></td>
<td>=0 write all received frames to memory</td>
</tr>
<tr>
<td>6</td>
<td>disable byte-swapping</td>
</tr>
<tr>
<td></td>
<td>=0 incoming 8-bit video is in order U, Y0, V, Y1 (CL-480)</td>
</tr>
<tr>
<td></td>
<td>=1 incoming 8-bit video is in order Y0, U, Y1, V (SAA711x)</td>
</tr>
<tr>
<td>(refer to bit 26 below)</td>
<td></td>
</tr>
<tr>
<td>8-7</td>
<td>officially reserved</td>
</tr>
<tr>
<td>7</td>
<td>??? messes up video image when set</td>
</tr>
<tr>
<td>9</td>
<td>LPB vertical sync input polarity</td>
</tr>
<tr>
<td></td>
<td>=0 active low</td>
</tr>
<tr>
<td></td>
<td>=1 active high</td>
</tr>
<tr>
<td>10</td>
<td>LPB horizontal sync input polarity</td>
</tr>
<tr>
<td></td>
<td>=0 active low</td>
</tr>
<tr>
<td></td>
<td>=1 active high</td>
</tr>
<tr>
<td>11</td>
<td>(write-only) CPU VSYNC</td>
</tr>
<tr>
<td></td>
<td>writing a 1 makes Trio act as if LPB VSYNC had been received</td>
</tr>
<tr>
<td>12</td>
<td>(write-only) CPU HSYNC</td>
</tr>
<tr>
<td></td>
<td>writing a 1 makes Trio act as if LPB HSYNC had been received</td>
</tr>
<tr>
<td>13</td>
<td>(write-only) load base address</td>
</tr>
<tr>
<td></td>
<td>writing a 1 causes an immediate load of the currently active base address</td>
</tr>
<tr>
<td>15-14</td>
<td>reserved</td>
</tr>
<tr>
<td>17-16</td>
<td>maximum compressed data burst, LPB to Scenic/MX2</td>
</tr>
<tr>
<td></td>
<td>00 one DWORD</td>
</tr>
<tr>
<td></td>
<td>01 two DWORDs</td>
</tr>
<tr>
<td></td>
<td>10 three DWORDs</td>
</tr>
<tr>
<td></td>
<td>11 burst until empty (must ensure that MX2's 8-entry FIFO is not overrun)</td>
</tr>
<tr>
<td>20-18</td>
<td>reserved</td>
</tr>
<tr>
<td>22-21</td>
<td>video FIFO threshold</td>
</tr>
<tr>
<td></td>
<td>number of filled slots at which to request that Trio's memory manager begin to empty the FIFO (00 = one slot, 01 = two slots, 10 = four slots, 11 = six slots)</td>
</tr>
<tr>
<td>23</td>
<td>reserved (read-only)</td>
</tr>
<tr>
<td>24</td>
<td>LPB clock source</td>
</tr>
<tr>
<td></td>
<td>=0 driven by SCLK (Pin194) (for Trio64-compatibility mode)</td>
</tr>
<tr>
<td></td>
<td>=1 driven by LCLK (Pin148) (default)</td>
</tr>
<tr>
<td>25</td>
<td>don't add line stride after first HSYNC within VSYNC</td>
</tr>
<tr>
<td></td>
<td>must be set if first HSYNC occurs before VSYNC goes active</td>
</tr>
<tr>
<td>26</td>
<td>invert LCLK (only has effect if bit 24 set)</td>
</tr>
<tr>
<td>27</td>
<td>reserved</td>
</tr>
<tr>
<td>28</td>
<td>(not yet on Trio64V+) current odd/even video field status</td>
</tr>
<tr>
<td>29</td>
<td>(not yet on Trio64V+) field inversion - when set, the LPB's FIELD pin state is inverted before being reported in bit 28</td>
</tr>
<tr>
<td>30</td>
<td>reserved</td>
</tr>
<tr>
<td>31</td>
<td>(read-only) current state of CFLEVEL input (Pin182) in Video In/Out</td>
</tr>
</tbody>
</table>
mode (refer to bits 3-1)
SeeAlso: #M0073

Bitfields for S3 Local Peripheral Bus LPB FIFO status:
Bit(s) Description (Table M0075)
31 video FIFO 1 is almost empty (has exactly one full slot)
30 video FIFO 1 is empty
29 video FIFO 1 is full
28-23 reserved
22 video FIFO 0 is almost empty (has exactly one full slot)
21 video FIFO 0 is empty
20 video FIFO 0 is full
19-14 reserved
13 output FIFO is almost empty (has exactly one full slot)
12 output FIFO is empty
11 output FIFO is full
10-4 reserved
3-0 number of free four-byte slots in FIFO (there are 8 slots)
SeeAlso: #M0073,#M0076

Bitfields for S3 Local Peripheral Bus interrupt status:
Bit(s) Description (Table M0076)
31-25 reserved
24 drive serial port clock line low on receipt of start condition
 (causes I2C wait states until interrupt handler responds to start cond)
23-20 reserved
19 enable interrupt on I2C start condition detection
18 enable interrupt on end of frame (VSYNC received)
17 enable interrupt on end of line (HSYNC received)
16 enable interrupt on LPB output FIFO empty
15-4 reserved
3 serial port detected I2C start condition
2 VSYNC received (end of frame)
1 HSYNC received (end of line)
0 LPB output FIFO emptied
Note: bits 3-0 are write-clear: writing a 1 to a bit resets it
SeeAlso: #M0073,#P0721

(Table M0077)
Values for S3 Local Peripheral Bus "direct address" index:
0000h CP3 installation (FF18h reads 00C3h if installed)
0001h ?
0002h ?
0003h ?
 bit 7: ???
 bits 6-0: ???
0004h ?
0005h ?
746 A to Z of C

bits 7-0: ???
0020h ? (set to 107D4h, 1xxD4h by CP3.DLL)
0028h ?
0034h ? (set to 10000h by CP3.DLL)
0414h ? (set by CP3.DLL)
0500h ?
0504h ?
0508h ?
050Ch ?
0510h ?
SeeAlso: #M0073

Bitfields for S3 Local Peripheral Bus General-Purpose I/O:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0</td>
<td>values to drive onto LPB GP output lines whenever CR5C is written</td>
</tr>
<tr>
<td>7-4</td>
<td>values of GP input lines (read-only), latched whenever CR5C is read</td>
</tr>
<tr>
<td>31-8</td>
<td>unused (read-only 0)</td>
</tr>
</tbody>
</table>

SeeAlso: #M0073

Bitfields for S3 Local Peripheral Bus serial-port register:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I2C clock line [SCL] (write)</td>
</tr>
<tr>
<td></td>
<td>= 1 tri-state SCL, allowing other devices to pull it low</td>
</tr>
<tr>
<td>1</td>
<td>I2C data line [SDA] (write)</td>
</tr>
<tr>
<td></td>
<td>= 1 tri-state SDA, allowing other devices to pull it low</td>
</tr>
<tr>
<td>2</td>
<td>I2C clock line (read)</td>
</tr>
<tr>
<td></td>
<td>this bit reflect the actual state of the SCL line</td>
</tr>
<tr>
<td>3</td>
<td>I2C data line (read)</td>
</tr>
<tr>
<td></td>
<td>this bit reflect the actual state of the SDA line</td>
</tr>
<tr>
<td>4</td>
<td>enable I2C interface</td>
</tr>
<tr>
<td></td>
<td>= 0 disable bits 0/1, forcing both SCL and SDA to be tri-stated</td>
</tr>
<tr>
<td>15-5</td>
<td>reserved (unused)</td>
</tr>
<tr>
<td>20-16</td>
<td>mirrors of bits 4-0</td>
</tr>
<tr>
<td></td>
<td>(these bits are on the data bus' byte lane 2 to make them accessible via I/O port 00E2h)</td>
</tr>
</tbody>
</table>

Notes: see file I2C.LST for details of the I2C device registers accessible through this interface (VPX3220A for Stealth64 Video 2001TV)
when the feature connector is disabled on the Stealth64 Video, these bits are connected to the monitor's DDC data and clock lines the official documentation erroneously lists the mirrors in bits 12-8 instead of 20-16

SeeAlso: #M0073, PORT 00E2h, #P0677

--------V-MB0000000--------------------------
MEM B000h:0000h - MDA TEXT BUFFER
Size: 4096 BYTES

--------V-MB0000000--------------------------
MEM B000h:0000h - HGC+ RAMFont-MODE TEXT BUFFER
Size: 16384 BYTES
Note: in RAMFont Mode 1, the memory is filled with the usual character/attribute pairs; in RAMFont Mode 2, four bits of each 'attribute' byte is used to provide 12 bits for specifying the character.

MEM B000h:0000h - HGC GRAPHICS BUFFER (PAGE 0)
Size: 32768 BYTES

MEM B400h:0000h - HGC+ RAMFont BUFFER
Size: 4096 BYTES
Notes: apparently write-only
- RAMFont Mode 1: 256 characters (8 bits each for char and attribute)
- RAMFont Mode 2: 3072 characters (12 bits for char, 4 bits for attrib)
 each character definition is 8 pixels wide (with 9th-column duplication if appropriate) by 8-16 pixels high

MEM B800h:0000h - CGA TEXT/GRAPHICS BUFFER
Size: 16384 BYTES

MEM B800h:0000h - EGA/VGA+ TEXT BUFFER
Size: 32768 BYTES

MEM B800h:0000h - HGC GRAPHICS BUFFER (PAGE 1)
Size: 32768 BYTES

MEM BFF0h:0000h - ET4000/W32 ACL accelerator
Size: 169 BYTES

Format of ET4000/W32 memory-mapped registers:
Offset Size Description (Table M0080)
00h DWORD MMU Registers: memory base pointer register 0 (see #M0081)
04h DWORD MMU Registers: memory base pointer register 1 (see #M0081)
08h DWORD MMU Registers: memory base pointer register 2 (see #M0081)
0Ch 7 BYTES ???
13h BYTE MMU Registers: MMU control register (see #M0082)
14h 28 BYTES ???
30h BYTE Non-Queued Registers: suspend/terminate
31h BYTE Non-Queued Registers: operation state (see #M0083) (write-only)
32h BYTE Non-Queued Registers: sync enable
33h BYTE ???
34h BYTE Non-Queued Registers: interrupt mask
35h BYTE Non-Queued Registers: interrupt status
36h BYTE Non-Queued Registers: ACL status (read-only)
 bit 1: read status (RDST) 1=ACL active, queue not empty
 bit 0: write status (WRST) 1=queue full
37h 73 BYTES ???
80h DWORD Queued Registers: pattern address (see #M0084)
84h DWORD Queued Registers: source address (see #M0084)
88h WORD Queued Registers: pattern Y offset (see #M0085)
8Ah WORD Queued Registers: source Y offset (see #M0085)
8Ch WORD Queued Registers: destination y offset (see #M0085)
8Eh BYTE Queued Registers: virtual bus size
8Fh BYTE Queued Registers: X/Y direction (see #M0086)
90h BYTE Queued Registers: pattern wrap (see #M0087)
91h BYTE ???
92h BYTE Queued Registers: source wrap (see #M0087)
93h BYTE ???
94h WORD Queued Registers: X position
96h WORD Queued Registers: Y position
98h WORD Queued Registers: X count (see #M0088)
9Ah WORD Queued Registers: Y count (see #M0088)
9Ch BYTE Queued Registers: routine control (see #M0089)
9Dh BYTE Queued Registers: reload control
9Eh BYTE Queued Registers: background ROP for mixing
9Fh BYTE Queued Registers: foreground ROP for mixing
A0h DWORD Queued Registers: destination address
A4h DWORD Queued Registers: internal pattern address
A8h DWORD Queued Registers: internal source address

Bitfields for ET4000/W32 memory base pointer register:
Bit(s) Description (Table M0081)
31-22 reserved
21-0 memory base pointer
SeeAlso: #M0080

Bitfields for ET4000/W32 MMU control register:
Bit(s) Description (Table M0082)
7 reserved
6-4 linear address control (LAC)
 bit 6: MMU aperture 2
 bit 5: MMU aperture 1
 bit 4: MMU aperture 0
3 reserved
2-0 aperture type (APT)
 bit 2: MMU aperture 2
 bit 1: MMU aperture 1
 bit 0: MMU aperture 0
SeeAlso: #M0080

Bitfields for ET4000/W32 operation state register:
Bit(s) Description (Table M0083)
7-4 reserved
3 restart operation after ACL-interruption
2-1 reserved
0 restore status before ACL-interruption
SeeAlso: #M0080
Bitfields for ET4000/W32 memory address register:
Bit(s) Description (Table M0084)
31-22 reserved
21-0 memory base pointer
SeeAlso: #M0080

Bitfields for ET4000/W32 offset register:
Bit(s) Description (Table M0085)
15-12 reserved
11-0 Y offset
SeeAlso: #M0080

Bitfields for ET4000/W32 X/Y direction register:
Bit(s) Description (Table M0086)
7-2 reserved
1 X direction
0 Y direction
SeeAlso: #M0080

Bitfields for ET4000/W32 wrap register:
Bit(s) Description (Table M0087)
7 reserved
6-4 pattern Y wrap
 000 = 1 line
 001 = 2 lines
 010 = 4 lines
 011 = 8 lines
 100 = reserved
 101 = reserved
 110 = reserved
 111 = no wrap
3 reserved
2-0 pattern X wrap
 000 = reserved
 001 = reserved
 010 = 4 byte
 011 = 8 byte
 100 = 16 byte
 101 = 32 byte
 110 = 64 byte
 111 = no wrap
SeeAlso: #M0080

Bitfields for ET4000/W32 count register:
Bit(s) Description (Table M0088)
15-12 reserved
11-0 pixel count
Bitfields for ET4000/W32 routine control register:

Bit(s) Description (Table M0089)

7-6 reserved
5-4 routing of CPU address (ADRO)
 00 don't use CPU address
 01 CPU address is destination
 10 reserved
 11 reserved

3 reserved
2-0 routing of CPU data (DARQ)
 000 don't use CPU data
 001 CPU data is source data
 010 CPU data is mixed data
 011 reserved
 100 CPU data is x-count
 101 CPU data is y-count
 10x reserved

SeeAlso: #M0080

--------V-MC0000000--------------------------
MEM C000h:0000h - VIDEO BIOS (EGA and newer)
Size: varies (usually 16K-24K for EGA, 24K-32K for VGA)
--------b-MC0000000--------------------------
MEM C000h:0000h OLIVETTI 640x400 GRAPHICS CARDS
Size: 62 BYTES
SeeAlso: MEM 0040h:0088h"Olivetti"

Format of Olivetti 640x480 ROM signatures:

Offset Size Description (Table M0133)

00h WORD 55AAh adapter ROM signature (check this!)

10h 2 BYTES "OL" if Olivetti EGA or VGA card

22h 2 BYTES (Olivetti EGA/VGA)
 "VG" for Olivetti VGA (supports 640x400 mode)
 "EG" for Olivetti EGA including Olivetti EGA card 2

3Ch 2 BYTES "PA" if Paradise card (supports 640x400 mode)

Note: These signatures can aid in the presence detection of an EGA or VGA adapter supporting the 640x400 mode.
Olivetti PC models M15 and M19 do not support the 640x400 mode (see INT 15h/C0h).
To decide if the 640x400 mode is supported by an Olivetti EGA card (only the Olivetti EGA card 2 supports it), also check that bit 7 and 5 are set at 0040h:0088h.

--------V-MC0000000--------------------------
MEM C000h:xxxxh - VESA VBE v3.0 PROTECTED MODE INFORMATION BLOCK
Format of VESA VBE 3.0 Protected Mode Information Block:
Offset Size Description (Table M0127)
00h 4 BYTES signature "PMID"
04h WORD offset of protected-mode entry point within BIOS
06h WORD offset of protected-mode initialization entry point
08h WORD selector for BIOS data area emulation block
(default 0000h, must be set by protected-mode OS to 16-bit
read/write data selector with limit of at least 0600h)
0Ah WORD selector to access physical memory at A0000h
(default A000h, must be set by protected-mode OS to 16-bit
read/write data selector with 64K limit)
0Ch WORD selector to access physical memory at B0000h
(default B000h, must be set by protected-mode OS to 16-bit
read/write data selector with 64K limit)
0Eh WORD selector to access physical memory at B8000h
(default B800h, must be set by protected-mode OS to 16-bit
read/write data selector with 32K limit)
10h BYTE protected-mode execution (default 00h; set to 01h by OS when
BIOS image is running in protected mode)
11h BYTE checksum byte for entire structure (this byte forces 8-bit
sum of all bytes to 00h)

-------h-mC0000000--------------------------
MEM C0000000h - Weitek "Abacus" math coprocessor
Size: 4096 BYTES

-------B-MC8000000--------------------------
MEM C800h:0000h - HARD DISK BIOS
Size: varies (usually 8K or 16K)

-------V-MC8001C00--------------------------
MEM C800h:1C00h - IBM XGA, XGA/A - MEMORY-MAPPED REGISTERS
Range: any 8K boundary within segments C000h to DFFFh
Notes: The XGA memory mapped registers can be assigned to the last 1K block in
in each 8K block in the range of C0000h-DFFFh; the base offset of
the 128 memory mapped location for a particular XGA instance is
Segment:(1C00h+instance*80h) for each XGA installed in a system
(default instance is 6). The instance number may be read from the
XGA's Programmable Option Select registers
The XGA/A (PS/2 adapter) uses the 7KB area below the memory-mapped
register area for ROM data; the XGA (PS/2 onboard) has included
this area in it's video BIOS ROM.
Most of the memory mapped registers are from the graphics coprocessor,
while the I/O-registers are for the display controller.

-------V-MC0007FF8--------------------------
MEM C000h:7FF8h - Matrox MGA Video Adapters - CARD VENDOR ID
Size: WORD
Desc: contains the PCI vendor ID for the card vendor; this is written into
the video controllers PCI subsystem-vendor-ID field
SeeAlso: MEM C000h:7FFAh, MEM C000h:7FFCh
--------V-VMC0007FFA--------------------------
MEM C000h:7FFAh - Matrox MGA Video Adapters - HARDWARE REVISION ID
Size: BYTE
SeeAlso: MEM C000h:7FF8h, MEM C000h:7FFCh
--------V-VMC0007FFC--------------------------
MEM C000h:7FFCh - Matrox MGA Video Adapters - OFFSET OF PINS DATA STRUCTURE
Size: WORD
SeeAlso: INT 10/AX=4F14h"Matrox", #00126, MEM C000h:7FF8h
--------b-MF0000000--------------------------
MEM F000h:0000h - WANG PC MEMORY MAPPED SCREEN BUFFER
Size: ???
Note: This is used by Peter Reilley's portable binary editor and viewer BEAV
to directly write into the Wang PC's video screen buffer (instead of using INT 10/AH=02h,09h) after it has been mapped in by writing
BYTE 01h to the screen port (PORT 1010h for the 1st screen, 1020h for the 2nd, 1030h for the 3rd, 1040h for the 4th). It will be
unmapped afterwards by writing BYTE 00h to the screen port.
Note, that this is only necessary when the INT 21/AX=4402h detection method resulted in non-IBM PC characteristic (return values other than 11h).
SeeAlso: MEM FC00h:3FC2h, INT 88h/AL=01h, INT 21h/4402h
--------b-MF0002DC5--------------------------
MEM F000h:2DC5h - IBM AT SIGNATURE
Size: ??? signature
Note: Original IBM ATs with a multi-sector hard disk ROM-BIOS bug can be identified by checking a (currently unknown) signature at this location. This is known to be done by the Concurrent CP/M-86 family. Presumably the OS will then prohibit timer ISR dispatches within a code window of F000h:2D95h..F000h:2DD4h.
--------A-MF0006000--------------------------
MEM F000h:6000h - IBM PC ROM BASIC
Size: 32768 BYTES
--------b-MF000800C--------------------------
MEM F000h:800Ch ZENITH
Size: 8 BYTES signature "ZDS CORP"
Note: Zenith machines may have 256 Kb extra memory at 0FA0000h linear.
--------MF000C000--------------------------
MEM F000h:C000h - Tandy ROM BIOS ID BYTE
Size: BYTE
Note: If the BYTE at this location is equal to 21h, some Microsoft software assumes this is a Tandy machine, and for example trusts the bits 1-0 at 0040h:0085h.
SeeAlso: MEM 0040h:00B5h"Tandy", INT 15/AH=C0h
--------b-MFC000050--------------------------
MEM FC00h:0050h - OLIVETTI Mxxx PC SIGNATURE
Size: 4 BYTES (or more) "OLIV"
Note: used by several Olivetti PCs, including M15, M19
SeeAlso: INT 15/AH=C0h

--------b-MFC003FC2--------------------------
MEM FC00h:3FC2h - WANG PC SIGNATURE
Size: 4 BYTES containing the signature "WANG"
Note: This is used by Peter Reilley's portable binary editor and viewer BEAV to detect a Wang PC.
SeeAlso: INT 88/AL=01h,INT 21/AX=4402h,INT 15/AH=C0h

--------b-MF000E000--------------------------
MEM F000h:E000h - ORIGINAL IBM PC ROM BIOS
Size: 8192 BYTES

--------b-MF000FFE0-------------------------
MEM F000h:FFE0h - COMPAQ 386 MACHINES
Size: 16 BYTES
SeeAlso: MEM 80C00000h

Format of Compaq 386 Memory Configuration Data:
Offset Size Description (Table M0134)
00h WORD Compaq 32-bit extra built-in memory available (FFFFh if not)
02h WORD Total size of Compaq extra memory
04h WORD Count of available paragraphs of Compaq extra memory
06h WORD Paragraph address of last paragraph in use as Compaq extra memory
08h 2 BYTES product class signature "03"
0Ah 6 BYTES signature "03COMPAQ"

Notes: The full "03COMPAQ" signature can be found in (at least) Compaq 386 machines which have dual harddisk controller. (see also CMOS 70h)
However, the 6-byte "COMPAQ" signature also seems to be available in other Compaq machines with dual hard disk controllers, at least the MS-DOS/PC DOS 10.SYS/IBMBIO.COM checks for if before it calls INT 15/AX=E400h and INT 15/AX=E480h.
Compaq's extra memory is mappable memory starting at FE00h:0000h growing downwards. It can be made available for example with Novell DOS 7+ EMM386.EXE /COMPAQ=ON.
Although this structure resides at a ROM-address it is actually write-protected RAM. To write to the structure to map in Compaq extra memory the write-protection must be temporarily disabled by setting bit 1 at WORD 80C00000h.

--------MF000FFE8--------------------------
MEM F000h:FFE8h - Compaq - MACHINE SIGNATURE STRING
Size: 8 BYTES
Desc: if this area contains the ASCII string "03COMPAQ", then this is a Compaq machine
SeeAlso: CMOS 1Bh"AMI"
---H-MF000FFF0--------------------------
MEM F000h:FFF0h - RESET JUMP
Size: 5 BYTEs

---B-MF000FFF5--------------------------
MEM F000h:FFF5h - ASCII BIOS DATE
Size: 8 BYTEs

---B-MF000FFFD--------------------------
MEM F000h:FFFDh - OFTEN USED TO ENSURE CORRECT BIOS CHECKSUM
Size: BYTE

---B-MF000FFE--------------------------
MEM F000h:FFFEh - MACHINE TYPE CODE
Size: BYTE

SeeAlso: INT 15/AH=C0h

---X-MF000xxx0--------------------------
MEM F000h:xxx0h - PCI IRQ Routing Table Specification v1.0
Size: N paragraphs (N >= 2)

InstallCheck: scan for the signature string "$PIR" followed by a valid PCI IRQ Routing Table

Range: any paragraph boundary within the range F0000h to FFFFFh

Format of PCI IRQ Routing Table v1.0:
Offset Size Description (Table M0090)
00h 4 BYTEs signature "$PIR"
04h WORD version (0100h for v1.0)
06h WORD table size in bytes
08h BYTE bus number for PCI Interrupt Router
09h BYTE device/function number for PCI Interrupt Router
0Ah WORD bitmap of PCI-exclusive IRGs (bit 0 = IRQ0, etc.)
0Ch WORD PCI vendor ID for compatible PCI Interrupt Router
0Eh WORD PCI device ID for compatible PCI Interrupt Router
10h DWORD Miniport data
14h 11 BYTEs reserved (0)
1Fh BYTE checksum (set to make 8-bit sum of bytes in entire structure equal 00h)

--- optional data ---
20h 16 BYTEs first slot entry (see #M0091)
...

16 BYTEs Nth slot entry

Format of PCI IRQ Routing Table slot entry:
Offset Size Description (Table M0091)
00h BYTE PCI bus number
01h BYTE PCI device number (bits 7-3)
02h BYTE link value for INTA#
03h WORD IRQ bitmap for INTA#
05h BYTE link value for INTB#
06h WORD IRQ bitmap for INTB#
08h BYTE link value for INTC#
09h WORD IRQ bitmap for INTC#
0Bh BYTE link value for INTD#
0Ch WORD IRQ bitmap for INTD#
0Eh BYTE slot number (00h = motherboard, other = vendor-specific)
0Fh BYTE reserved

SeeAlso: #M0090,#01260 at INT 1A/AX=B406h

--------B-MF000xxxx--------------------------
MEM F000h:xxxxh - AWARD Flash Hook

Format of AWARD Flash BIOS interface:
Offset Size Description (Table M0092)
00h 8 BYTES signature "AWDFLASH"
08h WORD offset in F000h of FAR function: Get ???
 Return: BL = ??? (00h)
0Ah WORD offset in F000h of FAR function: ???
0Ch WORD offset in F000h of FAR function: ???
0Eh WORD offset in F000h of FAR function: ???
10h WORD offset in F000h of FAR function: ???
12h WORD offset in F000h of FAR function: Disable Shadowing
14h WORD offset in F000h of FAR function: Enable Shadowing
16h WORD offset in F000h of FAR function: Get ???
 Return: DS:SI -> ??? (30 bytes?)
18h WORD offset in F000h of FAR function: Set ???
 DS:SI -> ??? (appears to be same as previous function)

Note: the AWDFLASH utility copies the ROM from F000h and uses the copy
instead of the original F000h:xxxxh addresses

--------B-MF000xxxx--------------------------
MEM F000h:xxxxh - Asustek Flash Hook

Format of Asustek Flash interface:
Offset Size Description (Table M0093)
00h 10 BYTES signature "ASUS_FLASH"
0Ah 6 BYTES blanks (padding)
10h WORD interface version??? (current PFLASH.EXE requires 0101h)
12h DWORD -> position-independent code to enable shadowing
16h WORD size of code pointed at by previous field (<= 0400h)
18h DWORD -> position-independent code to disable shadowing
1Ch WORD size of code pointed at by previous field (<= 0400h)

--------p-Mxxxxxxx0--------------------------
MEM xxxxh:xxx0h - Advanced Configuration and Power Interface Spec (ACPI) v0.9+

Range: any paragraph boundary in the first kilobyte of the XBDA, the last
kilobyte of conventional memory, or from E000h:0000h to F000h:FFE0h

Note: scan paragraph boundaries for the signature string "RSD PTR ", followed
by a valid Root System Description Pointer structure (see #M0094)

SeeAlso: INT 15/AX=E820h
!!acpi\acpi10.pdf p.194

Format of ACPI Root System Description Pointer structure:
Format of ACPI System Description Table header:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>4</td>
<td>signature</td>
</tr>
<tr>
<td>04h</td>
<td>DWORD</td>
<td>length of table in bytes, including this header</td>
</tr>
<tr>
<td>08h</td>
<td>BYTE</td>
<td>revision of specification corresponding to signature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01h for both v0.9 and v1.0</td>
</tr>
<tr>
<td>09h</td>
<td>BYTE</td>
<td>checksum (set such that entire table sums to 00h)</td>
</tr>
<tr>
<td>0Ah</td>
<td>6</td>
<td>OEM identification</td>
</tr>
<tr>
<td>10h</td>
<td>8</td>
<td>OEM table identifier</td>
</tr>
<tr>
<td>18h</td>
<td>4</td>
<td>OEM revision number</td>
</tr>
</tbody>
</table>

---ACPI v1.0---

| 1Ch | 4 | vendor ID for table-creation utility used |
| 20h | 4 | revision of table-creation utility |

SeeAlso: #M0094,#M0096,#M0099,#M0097,#M0100,#M0105,#M0108,#M0110

Format of ACPI Root System Description Table:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>36</td>
<td>System Description Table Header (see #M0095)</td>
</tr>
<tr>
<td>24h</td>
<td>N</td>
<td>physical addresses of other description tables</td>
</tr>
<tr>
<td>28h</td>
<td>4</td>
<td>Interrupt mode</td>
</tr>
</tbody>
</table>

Notes: the number of table pointers is implied by the table length field in the header (at offset 04h)
for ACPI v0.9, the header is eight bytes smaller and thus all following offsets are 8 less

SeeAlso: #M0094

Format of ACPI Fixed ACPI Description Table:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>36</td>
<td>System Description Table Header (see #M0095)</td>
</tr>
<tr>
<td>24h</td>
<td>DWORD</td>
<td>physical address of the Firmware ACPI Control Structure</td>
</tr>
<tr>
<td>28h</td>
<td>DWORD</td>
<td>physical address of the Differentiated System Description Table</td>
</tr>
<tr>
<td>2Ch</td>
<td>BYTE</td>
<td>interrupt mode</td>
</tr>
</tbody>
</table>

00h dual PIC (industry-standard AT-type)
01h multiple APIC (see #M0100)
else reserved
2Dh BYTE reserved
2Eh WORD system vector of SCI interrupt
30h DWORD I/O port address of SMI command port
34h BYTE value to write to SMI command port to disable SMI ownership of ACPI hardware registers
35h BYTE value to write to SMI command port to re-enable SMI ownership of ACPI hardware registers
36h BYTE (v1.0) value to write to SMI command port to enter S4BIOS state 00h if not supported
37h BYTE reserved
38h DWORD I/O port address of Power Management 1a Event Register Block
3Ch DWORD I/O port address of Power Management 1b Event Register Block (optional, 00000000h if not supported)
40h DWORD I/O port address of Power Management 1a Control Register Block
44h DWORD I/O port address of Power Management 1b Control Register Block (optional, 00000000h if not supported)
48h DWORD I/O port address of Power Management 2 Control Register Block (optional, 00000000h if not supported)
4Ch DWORD I/O port address of Power Management Timer Control Reg. Block
50h DWORD I/O port address of Generic Purpose Event 0 Register Block (optional, 00000000h if not supported)
54h DWORD I/O port address of Generic Purpose Event 1 Register Block (optional, 00000000h if not supported)
58h BYTE size of Power Management 1a/1b Event Register Block (>= 4)
59h BYTE size of Power Management 1a/1b Control Register Block (>= 1)
5Ah BYTE size of Power Management 2 Control Register Block (>= 1)
5Bh BYTE size of Power Management Timer Control Register Block (>= 4)
5Ch BYTE size of Generic Purpose Event 0 Register Block (multiple of 2)
5Dh BYTE size of Generic Purpose Event 1 Register Block (multiple of 2)
5Eh BYTE offset within General Purpose Event model for GPE1-based events
5Fh BYTE reserved
60h WORD worst-case hardware latency (microseconds) for entering/leaving state C2; >100 if C2 not supported
62h WORD worst-case hardware latency (microseconds) for entering/leaving state C3; >1000 if C3 not supported
64h WORD size of contiguous cacheable memory which must be read to flush all dirty lines from a processor's memory cache; use if fixed feature flag WBINVD (see #M0098) is clear 0000h if flushing not supported
66h WORD memory stride size (in bytes) to flush processor's memory cache
68h BYTE bit index of processor's duty cycle setting within the processor's P_CNT register
69h BYTE size of processor's duty cycle setting in bits
6Ah BYTE index within RTC CMOS RAM of the day-of-month alarm value 00h = not supported
6Bh BYTE index within RTC CMOS RAM of the month-of-year alarm value 00h = not supported
6Ch BYTE index within RTC CMOS RAM of the century alarm value
00h = not supported
6Dh BYTE reserved
6Eh DWORD fixed feature flags (see #M0098)
SeeAlso: #M0094,CMOS 7Dh,CMOS 7Eh,CMOS 7Fh

Bitfields for ACPI Fixed Feature Flags:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>WBINVD instruction is correctly supported by processor</td>
</tr>
<tr>
<td>1</td>
<td>WBINVD instruction flushes all caches and maintains coherency, but does not guarantee invalidation of all caches</td>
</tr>
<tr>
<td>2</td>
<td>all processors support C1 sleep state</td>
</tr>
<tr>
<td>3</td>
<td>C2 sleep state is configured to work on multiprocessor system</td>
</tr>
</tbody>
</table>

---v0.9---
4	power button is handled as a generic feature
5	RTC wake-up state is not supported in fixed register space
6	TMR_VAL size
	=0 24 bits
	=1 32 bits
7-31	reserved

---v1.0---
4	power button is handled as a control method device
5	=0 sleep button is handled as a fixed feature programming mode
	=1 control method device, or no sleep button
6	RTC wake-up state is not supported in fixed register space
7	RTc alarm can wake system from S4 state
8	TMR_VAL size
	=0 24 bits
	=1 32 bits
9-31	reserved

SeeAlso: #M0097

Format of ACPI Differentiated System Description Table:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>36 BYTEs</td>
<td>System Description Table Header (see #M0095) signature "DSDT"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>complex byte stream; refer to ACPI document and software</td>
</tr>
</tbody>
</table>

SeeAlso: #M0094

Format of ACPI Multiple APIC Description Table:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>36 BYTEs</td>
<td>System Description Table Header (see #M0095) signature "APIC"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>physical address of the local APIC in each processor's address space</td>
</tr>
<tr>
<td>24h</td>
<td>DWORD</td>
<td>multiple-APIC flags (see #M0101)</td>
</tr>
<tr>
<td>28h</td>
<td>DWORD</td>
<td>APIC structures (see #M0102,#M0104) first byte of each is type, second is length; types other than 00h and 01h are currently reserved and should be skipped</td>
</tr>
</tbody>
</table>
SeeAlso: #M0094

Bitfields for ACPI Multiple APIC Description Table flags:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>system contains AT-compatible dual 8259 interrupt controllers in addition to APICs</td>
</tr>
<tr>
<td>1-31</td>
<td>reserved (0)</td>
</tr>
</tbody>
</table>

SeeAlso: #M0100

Format of ACPI Local APIC Structure:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>BYTE</td>
<td>structure type (00h = Processor Local APIC)</td>
</tr>
<tr>
<td>01h</td>
<td>BYTE</td>
<td>length of this structure (0Ch for v0.9, 08h for v1.0)</td>
</tr>
<tr>
<td>02h</td>
<td>BYTE</td>
<td>processor ID</td>
</tr>
<tr>
<td>03h</td>
<td>BYTE</td>
<td>processor's local APIC ID</td>
</tr>
<tr>
<td>---v0.9---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>DWORD</td>
<td>physical address of APIC</td>
</tr>
<tr>
<td>08h</td>
<td>DWORD</td>
<td>flags (TBD)</td>
</tr>
<tr>
<td>---v1.0---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>DWORD</td>
<td>flags (see #M0103)</td>
</tr>
</tbody>
</table>

SeeAlso: #M0100,#M0104

Bitfields for ACPI Local APIC flags:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>APIC enabled</td>
</tr>
<tr>
<td>1-31</td>
<td>reserved (0)</td>
</tr>
</tbody>
</table>

SeeAlso: #M0102

Format of ACPI I/O APIC Structure:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>BYTE</td>
<td>structure type (00h = Processor Local APIC)</td>
</tr>
<tr>
<td>01h</td>
<td>BYTE</td>
<td>0Ch (length of this structure)</td>
</tr>
<tr>
<td>02h</td>
<td>BYTE</td>
<td>I/O APIC's ID</td>
</tr>
<tr>
<td>03h</td>
<td>BYTE</td>
<td>reserved (0)</td>
</tr>
<tr>
<td>04h</td>
<td>DWORD</td>
<td>physical address of the APIC</td>
</tr>
<tr>
<td>08h</td>
<td>DWORD</td>
<td>number of first system interrupt vector for APIC</td>
</tr>
</tbody>
</table>

SeeAlso: #M0100,#M0102

Format of ACPI Firmware ACPI Control Structure:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>4 BYTEs</td>
<td>signature "FACS"</td>
</tr>
<tr>
<td>04h</td>
<td>DWORD</td>
<td>length of entire structure in bytes (>= 40h)</td>
</tr>
<tr>
<td>08h</td>
<td>DWORD</td>
<td>value of system's hardware signature at last boot</td>
</tr>
<tr>
<td>0Ch</td>
<td>DWORD</td>
<td>real-mode ACPI OS waking vector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if nonzero, control is transferred to this address on next BIOS POST</td>
</tr>
<tr>
<td>10h</td>
<td>DWORD</td>
<td>global lock (see #M0107)</td>
</tr>
<tr>
<td>14h</td>
<td>DWORD</td>
<td>(v1.0) firmware control structure flags (see #M0106)</td>
</tr>
</tbody>
</table>

18h 44 BYTEs reserved (0)

Notes: this structure is located on a 64-byte boundary anywhere in the first 4GB of memory
the BIOS is required to omit the address space containing this structure from system memory in the system's memory map

SeeAlso: #M0094, INT 15/AX=E820h

Bitfields for ACPI Firmware Control Structure Feature flags:
Bit(s) Description (Table M0106)
0 system supports S4BIOS_REQ
 =0 operating system must save/restore memory state in order to go to S4
1-31 reserved (0)

SeeAlso: #M0105

Bitfields for ACPI Embedded Controller Arbitration Structure:
Bit(s) Description (Table M0107)
0 request for Global Lock ownership is pending
1 Global Lock is currently owned
2-31 reserved

SeeAlso: #M0105

Format of ACPI Persistent System Description Table:
Offset Size Description (Table M0108)
00h 36 BYTEs System Description Table Header (see #M0095)
signature "PSDT"
24h complex byte stream; refer to ACPI document and software

SeeAlso: #M0094

Format of ACPI Secondary System Description Table:
Offset Size Description (Table M0109)
00h 36 BYTEs System Description Table Header (see #M0095)
signature "SSDT"
24h complex byte stream; refer to ACPI document and software

SeeAlso: #M0094

Format of ACPI Smart Battery Description Table:
Offset Size Description (Table M0110)
00h 36 BYTEs System Description Table Header (see #M0095)
signature "SBST"
24h DWORD energy level in mWh at which system should warn user
28h DWORD energy level in mWh at which system should automatically enter sleep state
2Ch DWORD energy level in mWh at which system should perform an emergency shutdown

SeeAlso: #M0094

----------Mxxxxxxxx0---------------------------
MEM xxxxxh:xxx0h - BIOS32 Service Directory
InstallCheck: scan paragraph boundaries E000h to FFFFh for signature string
"_32_", followed by a valid header structure (see #F0021)
SeeAlso: CALL xxxxh:xxxxh"BIOS32"
----------Mxxxxxxx0-----------------------------------
MEM xxxxh:xxx0h - Desktop Management Interface / System Management BIOS
InstallCheck: scan paragraph boundaries F000h to FFFFh for signature string
"_DMI_", followed by a valid header structure (see #M0111,#M0112)

Format of Desktop Management Interface entry-point structure:
Offset Size Description (Table M0111)
00h 5 BYTEs signature "_DMI_"
05h BYTE checksum of this structure (forces 8-bit sum of bytes to 00h)
06h WORD total length of SMBIOS structure table, in bytes
08h DWORD 32-bit physical address of read-only SMBIOS structure table
 (see #F0059)
0Ch WORD number of SMBIOS structures
0Eh BYTE BCD SMBIOS revision (high nybble = major, low = minor)
SeeAlso: #M0112

Format of System Management BIOS entry-point structure:
Offset Size Description (Table M0112)
00h 4 BYTEs signature "_SM_"
04h BYTE checksum of this structure (forces 8-bit sum of bytes to 00h)
05h BYTE length of structure in bytes (1Fh for v2.1+)
06h BYTE major version of specification
07h BYTE minor version of specification (01h = vX.1, 16h = vX.22)
08h WORD size of largest SMBIOS structure (see also #F0046)
0Ah BYTE revision of this data structure
00h SMBIOS v2.1-2.3
 01h-FFh reserved for future versions
0Bh 5 BYTEs revision-specific data (currently unused)
10h 5 BYTEs intermediate anchor string "_DMI_"
15h BYTE checksum of intermediate entry-point structure
 (forces 8-bit sum of bytes 10h-1Eh to 00h)
16h WORD total length of SMBIOS structure table, in bytes
18h DWORD 32-bit physical address of read-only SMBIOS structure table
 (see #F0059)
1Ch WORD number of SMBIOS structures
1Eh BYTE BCD SMBIOS revision (high nybble = major, low = minor)
 00h if specification version only given in bytes 06h/07h
BUG: due to an error in the v2.1 specification, some implementations might
 indicate a length of 1Eh bytes instead of 1Fh
SeeAlso: #M0111
----------Mxxxxxxx0-----------------------------------
MEM xxxxh:xxx0h - Multiprocessor Specification - FLOATING POINTER STRUCTURE
InstallCheck: scan paragraph boundaries for the signature string "_MP_",
 followed by a valid floating pointer structure (see #M0113)
Range: any paragraph boundary in the first kilobyte of the XBDA, the last
kilobyte of conventional memory, or from F000h:0000h to F000h:FFE0h
SeeAlso: MEM FEE00000h

Format of Multiprocessor Specification Floating Pointer structure:
Offset Size Description (Table M0113)
00h 4 BYTES signature "_MP_
04h DWORD physical address of MP configuration table (see #M0114)
08h BYTE length of this structure in paragraphs (currently 01h)
09h BYTE revision of MP specification supported
01h = v1.1
04h = v1.4
0Ah BYTE checksum (8-bit sum of entire structure, including this byte, must equal 00h)
0Bh BYTE MP feature byte 1: system configuration type
00h: MP configuration table present
nonzero: default configuration implemented by system
0Ch BYTE MP feature byte 2
bit 7: IMCR present
bits 6-0: reserved (0)
0Dh 3 BYTES MP feature bytes 3-5 (reserved, must be 00h)

Format of Multiprocessor Specification configuration table header:
Offset Size Description (Table M0114)
00h 4 BYTES signature "PCMP"
04h WORD length of base configuration table in bytes, including this header
06h BYTE revision of MP specification supported
01h = v1.1
04h = v1.4
07h BYTE checksum of entire base configuration table
08h 8 BYTES OEM identifier
10h 12 BYTES product ID
1Ch DWORD physical address to OEM-defined configuration table
00000000h if not present
20h WORD size of base OEM table in bytes (0000h if not present)
22h WORD number of entries in variable portion of base table
24h DWORD address of local APIC (see also MEM FEE0h:0020h)
28h WORD length of extended entries following end of base table (in bytes)
2Ah BYTE checksum for extended table entries (includes only extended entries following base table)
2Ch var configuration table entries (see #M0115)
SeeAlso: #M0113

Format of Multiprocessor Specification configuration table entries:
Offset Size Description (Table M0115)
00h BYTE entry type code
00h processor
01h bus
02h I/O APIC
03h I/O interrupt assignment
04h local interrupt assignment
80h system address space mapping
81h bus hierarchy descriptor
82h compatibility bus address space modifier

---processor---
01h BYTE local APIC identifier
02h BYTE local APIC version
03h BYTE CPU flags
 bit 0: processor usable
 bit 1: bootstrap processor
04h WORD CPU type
 bits 11-8: CPU family
 bits 7-4: CPU model
 bits 3-0: stepping
 (bits 11-0 all set indicate non-Intel-compatible CPU)
06h 2 BYTES unused
08h DWORD feature flags (as returned by Pentium CPUID instruction)
0Ch 8 BYTES reserved

---bus---
01h BYTE bus ID (assigned sequentially from 00h by BIOS)
02h 6 BYTES bus type (blank-padded ASCII string) (see #M0116)

---I/O APIC---
01h BYTE APIC identifier
02h BYTE APIC version
03h BYTE I/O APIC flags
 bit 0: enabled
 bits 7-1: reserved
04h DWORD base address for APIC

---I/O,local interrupt assignment---
01h BYTE interrupt type
 00h vectored interrupt (from APIC)
 01h NMI
 02h system management interrupt
 03h vectored interrupt (from external PIC)
02h BYTE APIC control (see #M0117)
03h BYTE unused
04h BYTE source bus identifier
05h BYTE source bus IRQ
06h BYTE destination I/O APIC identifier
07h BYTE destination I/O APIC interrupt pin number

---system address space mapping---
01h BYTE entry length (14h)
02h BYTE bus ID
03h BYTE address type (00h I/O, 01h memory, 02h prefetch)
04h QWORD starting address of region visible to bus
0Ch QWORD length of region visible to bus
---bus hierarchy descriptor---
01h BYTE entry length (08h)
02h BYTE bus ID
03h BYTE bus information
 bit 0: subtractive decoding
04h BYTE ID of parent bus
05h 3 BYTEs reserved
---compatibility bus address space modifier---
01h BYTE entry length (08h)
02h BYTE bus ID
03h BYTE address modifier
 bit 0: remove address ranges in predefined range list from
 bus's address space
04h DWORD number indicating predefined address space range to be removed
 00h ISA-compatible I/O range (x100h-x3FFh and aliases)
 01h VGA-compatible I/O range (x3B0h-x3BBh,x3C0h-x3DFh,aliases)
SeeAlso: #M0114

(Table M0116)
Values for Multiprocessor Specification bus name:
"CBUS" Corollary CBus
"CBUSII" Corollary CBus II
"EISA" IEEE FutureBus
"INTERN" internal bus
"ISA" Multibus I
"MBI" Multibus II
"MCA" Microchannel
"MPI" Microchannel
"MPSA" Apple Macintosh NuBus
"PCI" DEC TurboChannel
"TC" VESA Local Bus
"VME" VMEbus
"XPRESS" Express System Bus
SeeAlso: #M0115

Bitfields for Multiprocessor Specification APIC control:
Bit(s) Description (Table M0117)
 1-0 input signal polarity
 00 conforms to bus specification
 01 active high
 10 reserved
11 active low
3-2 trigger mode
00 conforms to bus specification
01 edge-triggered
10 reserved
11 level-triggered
SeeAlso: #M0115

---H-mFEC00000--------------------------
MEM FEC00000h - Pentium - 82379AB I/O APIC - I/O REGISTER SELECT
Size: DWORD
Desc: bits 7-0 of the I/O Register Select memory location specify which
of the APIC's registers appears in the I/O Window at FExxx010h
Range: the Multiprocessor Specification calls for I/O APICs to be memory-
mapped on 4K boundaries between FEC00000h and FEDFC000h; the Intel
82379AB I/O APIC can be memory-mapped on any 1K boundary within
FEC00000h-FEC0F800h
Note: this memory-mapped register is also supported by the Intel 82093AA
I/O APIC
SeeAlso: MEM FEC00010h,MEM FEE00000h,MEM xxxxh:xxx0h"Multiprocessor"

---H-mFEC00010--------------------------
MEM FEC00010h - Pentium - 82379AB I/O APIC - I/O WINDOW
Size: DWORD
Range: the Multiprocessor Specification calls for I/O APICs to be memory-
mapped on 4K boundaries between FEC00000h and FEDFC000h
Note: this memory-mapped register is also supported by the Intel 82093AA
I/O APIC
SeeAlso: MEM FEC00010h

(Table M0118)
Values for Intel 82379AB/82093AA I/O APIC registers:
00h APIC ID
01h APIC version (read-only)
bits 31-24: reserved
bits 23-16: maximum redirection entry
bits 15-8: reserved
bits 7-0: APIC version (11h for 82093AA)
02h APIC arbitration ID (read-only)
bits 31-28: reserved
bits 27-24: arbitration ID
bits 23-0: reserved
10h-11h redirection table entry 0 (10h=low DWORD, 11h=high DWORD)
12h-13h redirection table entry 1 (see !!!)
...
2Eh-2Fh redirection table entry 15
---82093AA only---
30h-31h redirection table entry 16
...
3Eh-3Fh redirection table entry 23
Bitfields for APIC redirection table entry:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-56</td>
<td>destination</td>
</tr>
<tr>
<td>55-17</td>
<td>reserved</td>
</tr>
<tr>
<td>16</td>
<td>interrupt mask</td>
</tr>
<tr>
<td>15</td>
<td>trigger mode</td>
</tr>
<tr>
<td>14</td>
<td>remote IRR (read-only)</td>
</tr>
<tr>
<td>13</td>
<td>interrupt input pin polarity</td>
</tr>
<tr>
<td>12</td>
<td>delivery status (read-only)</td>
</tr>
<tr>
<td>11</td>
<td>destination mode</td>
</tr>
<tr>
<td>10-8</td>
<td>delivery mode</td>
</tr>
<tr>
<td>7-0</td>
<td>interrupt vector (10h-FEh)</td>
</tr>
</tbody>
</table>

MEM FEE00000h - Pentium - LOCAL APIC
Size: 4096 BYTES
Notes: the Advanced Programmable Interrupt Controller built into multiprocessor-capable Pentiums (P54C, etc. -- basically 75MHz and faster Pentiums) maps its registers into the top of the physical address space on data reads and writes, but not on code reads; data accesses to the APIC registers do not cause external bus cycles.

the APIC's registers are only visible when the APIC is enabled (which occurs at CPU reset when external data lines contain proper signals); all accesses to APIC registers should use 32-bit reads or writes, as 8-bit and 16-bit accesses may produce unpredictable results.

the PentiumPro (P6) permits the address at which the local APIC appears to be changed with Model-Specific Register 0000001Bh.

SeeAlso: MEM FEC00000h,MEM FEE00020h,MEM xxxxh:xxx0h"Multiprocessor"

SeeAlso: MSR 0000001Bh

MEM FEE00020h - Pentium - LOCAL APIC - LOCAL APIC ID REGISTER
Size: DWORD
SeeAlso: MEM FEE00030h

MEM FEE00030h - Pentium - LOCAL APIC - LOCAL APIC VERSION REGISTER
Size: DWORD
Note: read-only
SeeAlso: MEM FEE00020h

MEM FEE00040h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h

MEM FEE00050h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h

MEM FEE00060h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
--------H-mFEE00070--------------------------
MEM FEE00070h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
--------H-mFEE00080--------------------------
MEM FEE00080h - Pentium - LOCAL APIC - TASK PRIORITY REGISTER (TPR)
Size: DWORD
--------H-mFEE00090--------------------------
MEM FEE00090h - Pentium - LOCAL APIC - ARBITRATION PRIORITY REGISTER (APR)
Size: DWORD
Note: read-only
--------H-mFEE000A0--------------------------
MEM FEE000A0h - Pentium - LOCAL APIC - END OF INTERRUPT REGISTER (EOI)
Size: DWORD
Note: write-only
--------H-mFEE000A0--------------------------
MEM FEE000A0h - Pentium - LOCAL APIC - PROCESSOR PRIORITY REGISTER (PPR)
Size: DWORD
Note: read-only
SeeAlso: MEM FEE00000h
--------H-mFEE000B0--------------------------
MEM FEE000B0h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
--------H-mFEE000C0--------------------------
MEM FEE000C0h - Pentium - LOCAL APIC - REMOTE READ REGISTER
Size: DWORD
Note: read-only
--------H-mFEE000D0--------------------------
MEM FEE000D0h - Pentium - LOCAL APIC - LOGICAL DURATION REGISTER (LDR)
Size: DWORD
SeeAlso: MEM FEE00000h
--------H-mFEE000E0--------------------------
MEM FEE000E0h - Pentium - LOCAL APIC - DESTINATION FORMAT REGISTER (DFR)
Size: DWORD
 bits 27-0: read-only
 bits 31-28: read-write
--------H-mFEE000F0--------------------------
MEM FEE000F0h - Pentium + - LOCAL APIC - SPURIOUS INTERRUPT VECTOR REGISTER
Size: DWORD

Bitfields for Local APIC Spurious Interrupt Vector register:
Bit(s) Description (Table M0126)
63-10 reserved
9 disable focus processor checking during lowest-priority delivery
8 APIC enabled by software
7-4 spurious vector number
3-0 reserved (1)
MEM FEE00100h - Pentium + - LOCAL APIC - IN-SERVICE REGISTER (ISR)
Size: 128 BYTES
Note: read-only
SeeAlso: MEM FEE00200h

MEM FEE00180h - Pentium + - LOCAL APIC - TRIGGER MODE REGISTER (TMR)
Size: 128 BYTES
Note: read-only
SeeAlso: MEM FEE00000h

MEM FEE00200h - Pentium + - LOCAL APIC - INTERRUPT REQUEST REGISTER (IRR)
Size: 128 BYTES
Note: read-only
SeeAlso: MEM FEE00100h

MEM FEE00280h - Pentium + - LOCAL APIC - ERROR STATUS REGISTER
Size: DWORD
Note: read-only

Bitfields for Pentium APIC error status register:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
<th>(Table M0120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>send checksum error</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>receive checksum error</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>send accept error</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>receive accept error</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>send illegal vector</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>receive illegal vector</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>illegal register address</td>
<td></td>
</tr>
<tr>
<td>31-8</td>
<td>reserved</td>
<td></td>
</tr>
</tbody>
</table>

MEM FEE00300h - Pentium + - LOCAL APIC - INTERRUPT COMMAND REGISTER (ICR)
Size: DWORD
Note: this is the low half of the 64-bit ICR
SeeAlso: MEM FEE00310h,#M0121

Bitfields for Pentium APIC Interrupt Command Register:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
<th>(Table M0121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td>interrupt vector number</td>
<td></td>
</tr>
<tr>
<td>10-8</td>
<td>delivery mode (see #M0122)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>destination mode</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>delivery status (read-only)</td>
<td>1 = transfer pending</td>
</tr>
<tr>
<td>13</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>level (0 = INIT Level Deassert message, 1 = anything else)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>trigger mode (1)</td>
<td></td>
</tr>
<tr>
<td>17-16</td>
<td>remote read status (read-only)</td>
<td></td>
</tr>
<tr>
<td>19-18</td>
<td>destination shorthand</td>
<td></td>
</tr>
</tbody>
</table>
00 as specified by destination field
01 self
10 all including self
11 all except self
55-20 reserved
63-56 destination for interrupt request or message
SeeAlso: #M0124

(Table M0122)
Values for Pentium APIC delivery mode:
000b fixed
001b lowest-priority
010b SMI
011b remote read
100b NMI
101b INIT
110b start up
111b reserved
SeeAlso: #M0121
--------H-mFEE00310--------------------------
MEM FEE00310h - Pentium + - LOCAL APIC - INTERRUPT COMMAND REGISTER (ICR)
Size: DWORD
Note: this is the high half of the 64-bit ICR
SeeAlso: MEM FEE00300h,#M0121
--------H-mFEE00320--------------------------
MEM FEE00320h - Pentium + - LOCAL APIC - LOCAL VECTOR TABLE ENTRY 0 (TIMER)
Size: DWORD
SeeAlso: MEM FEE00350h,MEM FEE00370h,MEM FEE003E0h,INT 70h

Bitfields for Pentium APIC timer local vector entry:
Bit(s) Description (Table M0123)
7-0 interrupt vector number
11-8 reserved
12 delivery status (read-only)
 1 = interrupt being sent to APIC
15-13 reserved
16 interrupt delivery disabled
17 timer mode (0=one-shot, 1=periodic)
31-18 reserved
SeeAlso: #M0125,#M0124
--------H-mFEE00330--------------------------
MEM FEE00330h - Pentium + - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
--------H-mFEE00340--------------------------
MEM FEE00340h - Pentium + - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
--------H-mFEE00350--------------------------
MEM FEE00350h - Pentium + - LOCAL APIC - LOCAL VECTOR TABLE ENTRY 1 (LINT0)
Size: DWORD
SeeAlso: MEM FEE00320h, MEM FEE00360h

Bitfields for Pentium APIC LINTx local vector entry:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0</td>
<td>interrupt vector number</td>
</tr>
<tr>
<td>10-8</td>
<td>delivery mode</td>
</tr>
<tr>
<td>10</td>
<td>fixed</td>
</tr>
<tr>
<td>11</td>
<td>NMI</td>
</tr>
<tr>
<td>111</td>
<td>external interrupt (8259A-compatibility)</td>
</tr>
<tr>
<td>11</td>
<td>reserved</td>
</tr>
<tr>
<td>12</td>
<td>delivery status (read-only)</td>
</tr>
<tr>
<td>13</td>
<td>interrupt pin is active low</td>
</tr>
<tr>
<td>14</td>
<td>remote IRR</td>
</tr>
<tr>
<td>15</td>
<td>trigger mode</td>
</tr>
<tr>
<td>0</td>
<td>edge-sensitive</td>
</tr>
<tr>
<td>1</td>
<td>level-sensitive</td>
</tr>
<tr>
<td>16</td>
<td>interrupt delivery disabled</td>
</tr>
<tr>
<td>31-17</td>
<td>reserved</td>
</tr>
</tbody>
</table>

SeeAlso: #M0123

--------H-mFEE00360--------------------------
MEM FEE00360h - Pentium + - LOCAL APIC - LOCAL VECTOR TABLE ENTRY 2 (LINT1)
Size: DWORD
SeeAlso: MEM FEE00350h, MEM FEE00370h, #M0124

--------H-mFEE00370--------------------------
MEM FEE00370h - Pentium + - LOCAL APIC - LOCAL VECTOR TABLE ENTRY 3 (Error)
Size: DWORD
SeeAlso: MEM FEE00320h, MEM FEE00370h

--------H-mFEE00380--------------------------
MEM FEE00380h - Pentium + - LOCAL APIC - INITIAL COUNT REGISTER (ICR) TIMER
Size: DWORD
Desc: timer start value, which together with the Divide Configuration Register also determines its period when periodic mode has been selected
SeeAlso: MEM FEE00000h, MEM FEE00390h

--------H-mFEE00390--------------------------
MEM FEE00390h - Pentium + - LOCAL APIC - CURRENT COUNT REGISTER (CCR) TIMER
Size: DWORD
Desc: current timer count; when this value reaches zero, an interrupt is generated
Note: read-only
SeeAlso: MEM FEE00380h

--------H-mFEE003A0--------------------------
MEM FEE003A0h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h

--------H-mFEE003B0--------------------------
MEM FEE003B0h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
--------H-mFEE003C0--------------------------
MEM FEE003C0h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
--------H-mFEE003D0--------------------------
MEM FEE003D0h - Pentium - LOCAL APIC - RESERVED
SeeAlso: MEM FEE00000h
--------H-mFEE003E0--------------------------
MEM FEE003E0h - Pentium + - LOCAL APIC - TIMER DIVIDE CONFIGURATION REGISTER
Size: DWORD
SeeAlso: MEM FEE00000h,MEM FEE00320h

Bitfields for Pentium (and later) APIC timer divide configuration:
Bit(s) Description (Table M0125)
31-4 reserved
3,1,0 divisor
 000 divide by 2
 001 by 4
 010 by 8
 ...
 110 by 128
 111 by 1
2 zero (0)

Note: the divisor determines the timer's time base relative to the processor clock
SeeAlso: #M0123
--------MFFFF0010--------------------------
MEM FFFFh:0010h - HIGH MEMORY AREA (HMA)
Size: 65520 BYTEs

71.5 Other resources

Wonderful documents on CMOS RAM, Far call interface list, Model Specific Registers, Assembler Opcodes, I2C Bus devices and System-management mode are part of RBIL. Because of space constraint I avoid listing them here. Anyhow they are available on CD.