

“Charm can fool you.”

Ralf Brown’s Interrupt
List

Ralf Brown is a well-known authority for maintaining both documented and

undocumented BIOS interrupts, DOS interrupts, memory map and other system-oriented
information. Because of him only, the world came to know so many officially undocumented
interrupts and system specific information. His work is appreciated throughout the world by
thousands of DOS Programmers. The entire Ralf Brown’s Interrupt List is available on CD .
The complete list runs up to thousands of pages! Because of space constraint, I provide only a
part of Ralf Brown’s Interrupt List. Ralf Brown’s sources are used with his special permission.
Many thanks to Dr. Ralf Brown!

71.1 Notations
 To save spaces, RBIL (Ralf Brown’s Interrupt List) uses few notations. So we have to
understand those notations before using RBIL.

If it is marked "internal" or undocumented, you should check it carefully to make sure
it works the same way in your version of the software. Information marked with "???" is
known to be incomplete or guesswork.

FLAGS
The use of -> instead of = signifies that the indicated register or register pair contains

a pointer to the specified item, rather than the item itself. Register pairs (such as AX:BX)
indicate that the item is split across the registers, with the high-order half in the first register.

CATEORIES
The ninth column of the divider line preceding an entry usually contains a classification

code (the entry has not been classified if that character is a dash). The codes currently in use
are:
 A - applications, a - access software (screen readers, etc),
 B - BIOS, b - vendor-specific BIOS extensions,
 C - CPU-generated, c - caches/spoolers,
 D - DOS kernel, d - disk I/O enhancements,
 E - DOS extenders, e - electronic mail, F - FAX,
 f - file manipulation, G - debuggers/debugging tools, g - games,
 H - hardware, h - vendor-specific hardware,
 I - IBM workstation/terminal emulators, i - system info/monitoring,
 J - Japanese, j - joke programs,
 K - keyboard enhancers, k - file/disk compression,
 l - shells/command interpreters,
 M - mouse/pointing device, m - memory management,
 N - network, n - non-traditional input devices,

71

 A to Z of C

637

 O - other operating systems,
 P - printer enhancements, p - power management,
 Q - DESQview/TopView and Quarterdeck programs,
 R - remote control/file access, r - runtime support,
 S - serial I/O, s - sound/speech,
 T - DOS-based task switchers/multitaskers, t - TSR libraries
 U - resident utilities, u - emulators,
 V - video, v - virus/antivirus,
 W - MS Windows,
 X - expansion bus BIOSes, x - non-volatile config storage
 y - security, * - reserved (and not otherwise classified)

71.2 Interrupt List
71.2.1 Overview
 Following is the overall picture about all interrupts.

TITLES
INT 00 - CPU-generated - DIVIDE ERROR
INT 01 - CPU-generated - SINGLE STEP; (80386+) - DEBUGGING EXCEPTIONS
INT 02 - external hardware - NON-MASKABLE INTERRUPT
INT 03 - CPU-generated - BREAKPOINT
INT 04 - CPU-generated - INTO DETECTED OVERFLOW
INT 05 - PRINT SCREEN; CPU-generated (80186+) - BOUND RANGE EXCEEDED
INT 06 - CPU-generated (80286+) - INVALID OPCODE
INT 07 - CPU-generated (80286+) - PROCESSOR EXTENSION NOT AVAILABLE
INT 08 - IRQ0 - SYSTEM TIMER; CPU-generated (80286+)
INT 09 - IRQ1 - KEYBOARD DATA READY; CPU-generated (80286,80386)
INT 0A - IRQ2 - LPT2/EGA,VGA/IRQ9; CPU-generated (80286+)
INT 0B - IRQ3 - SERIAL COMMUNICATIONS (COM2); CPU-generated (80286+)
INT 0C - IRQ4 - SERIAL COMMUNICATIONS (COM1); CPU-generated (80286+)
INT 0D - IRQ5 - FIXED DISK/LPT2/reserved; CPU-generated (80286+)
INT 0E - IRQ6 - DISKETTE CONTROLLER; CPU-generated (80386+)
INT 0F - IRQ7 - PARALLEL PRINTER
INT 10 - VIDEO; CPU-generated (80286+)
INT 11 - BIOS - GET EQUIPMENT LIST; CPU-generated (80486+)
INT 12 - BIOS - GET MEMORY SIZE
INT 13 - DISK
INT 14 - SERIAL
INT 15 - CASSETTE
INT 16 - KEYBOARD
INT 17 - PRINTER
INT 18 - DISKLESS BOOT HOOK (START CASSETTE BASIC)
INT 19 - SYSTEM - BOOTSTRAP LOADER
INT 1A - TIME
INT 1B - KEYBOARD - CONTROL-BREAK HANDLER
INT 1C - TIME - SYSTEM TIMER TICK
INT 1D - SYSTEM DATA - VIDEO PARAMETER TABLES

A to Z of C

638

INT 1E - SYSTEM DATA - DISKETTE PARAMETERS
INT 1F - SYSTEM DATA - 8x8 GRAPHICS FONT
INT 20 - DOS 1+ - TERMINATE PROGRAM
INT 21 - DOS 1+ - Function Calls
INT 22 - DOS 1+ - PROGRAM TERMINATION ADDRESS
INT 23 - DOS 1+ - CONTROL-C/CONTROL-BREAK HANDLER
INT 24 - DOS 1+ - CRITICAL ERROR HANDLER
INT 25 - DOS 1+ - ABSOLUTE DISK READ
INT 26 - DOS 1+ - ABSOLUTE DISK WRITE
INT 27 - DOS 1+ - TERMINATE AND STAY RESIDENT
INT 28 - DOS 2+ - DOS IDLE INTERRUPT
INT 29 - DOS 2+ - FAST CONSOLE OUTPUT
INT 2A - NETBIOS
INT 2B - DOS 2+ - RESERVED
INT 2C - DOS 2+ - RESERVED
INT 2D - DOS 2+ - RESERVED
INT 2E - DOS 2+ - PASS COMMAND TO COMMAND INTERPRETER FOR EXECUTION
INT 2F - Multiplex
INT 30 - (NOT A VECTOR!) - DOS 1+ - FAR JMP instruction
INT 31 - overwritten by CP/M jump instruction in INT 30
INT 32 - (no special use)
INT 33 - MS MOUSE
INT 34 - FLOATING POINT EMULATION - OPCODE D8h
INT 35 - FLOATING POINT EMULATION - OPCODE D9h
INT 36 - FLOATING POINT EMULATION - OPCODE DAh
INT 37 - FLOATING POINT EMULATION - OPCODE DBh
INT 38 - FLOATING POINT EMULATION - OPCODE DCh
INT 39 - FLOATING POINT EMULATION - OPCODE DDh
INT 3A - FLOATING POINT EMULATION - OPCODE DEh
INT 3B - FLOATING POINT EMULATION - OPCODE DFh
INT 3C - FLOATING POINT EMULATION - SEGMENT OVERRIDE
INT 3D - FLOATING POINT EMULATION - STANDALONE FWAIT
INT 3E - FLOATING POINT EMULATION - Borland "SHORTCUT" CALL
INT 3F - Overlay manager interrupt (Microsoft/Borland)
INT 40 - DISKETTE - RELOCATED ROM BIOS DISKETTE HANDLER
INT 41 - SYSTEM DATA - HARD DISK 0 PARAMETER TABLE; CPU - MS Windows
INT 42 - VIDEO - RELOCATED DEFAULT INT 10 VIDEO SERVICES (EGA,VGA)
INT 43 - VIDEO DATA - CHARACTER TABLE (EGA,MCGA,VGA)
INT 44 - VIDEO DATA - CHARACTER FONT (PCjr); Novell NetWare
INT 45 - Z100/Acorn
INT 46 - SYSTEM DATA - HARD DISK 1 DRIVE PARAMETER TABLE
INT 47 - Z100/Acorn/Western Digital/SQL Base
INT 48 - KEYBOARD (PCjr) - Z100/Watstar/Acorn/Western Digital/Compaq
INT 49 - SYSTEM DATA (PCjr) - Z100/TI/Watstar/Acorn/MAGic
INT 4A - SYSTEM - USER ALARM HANDLER
INT 4B - IBM SCSI interface; Virtual DMA Specification (VDS)
INT 4C - Z100/Acorn/TI
INT 4D - Z100

 A to Z of C

639

INT 4E - TI/Z100
INT 4F - Common Access Method SCSI
INT 50 - IRQ0 relocated by software
INT 51 - IRQ1 relocated by software
INT 52 - IRQ2 relocated by software
INT 53 - IRQ3 relocated by software
INT 54 - IRQ4 relocated by software
INT 55 - IRQ5 relocated by software
INT 56 - IRQ6 relocated by software
INT 57 - IRQ7 relocated by software
INT 58 - IRQ8/0 relocated by software
INT 59 - IRQ9/1 relocated by software; GSS Computer Graphics Interface
INT 5A - IRQ10/2 relocated by software
INT 5B - IRQ11/3 relocated by software; Network
INT 5C - IRQ12/4 relocated by software; Network Interface
INT 5D - IRQ13/5 relocated by software
INT 5E - IRQ14/6 relocated by software
INT 5F - IRQ15/7 relocated by software; HP 95LX GRAPHICS PRIMITIVES
INT 60 - reserved for user interrupt; multiple purposes
INT 61 - reserved for user interrupt; multiple purposes
INT 62 - reserved for user interrupt; multiple purposes
INT 63 - reserved for user interrupt; multiple purposes
INT 64 - reserved for user interrupt; multiple purposes
INT 65 - reserved for user interrupt; multiple purposes
INT 66 - reserved for user interrupt; multiple purposes
INT 67 - reserved for user interrupt; LIM EMS; multiple purposes
INT 68 - multiple purposes
INT 69 - multiple purposes
INT 6A - multiple purposes
INT 6B - multiple purposes
INT 6C - CONVERTIBLE; DOS 3.2; DECnet DOS network scheduler
INT 6D - VGA - internal
INT 6E - DECnet DOS - DECnet NETWORK PROCESS API
INT 6F - Novell NetWare; 10NET; MS Windows 3.0
INT 70 - IRQ8 - CMOS REAL-TIME CLOCK
INT 71 - IRQ9 - REDIRECTED TO INT 0A BY BIOS
INT 72 - IRQ10 - RESERVED
INT 73 - IRQ11 - RESERVED
INT 74 - IRQ12 - POINTING DEVICE (PS)
INT 75 - IRQ13 - MATH COPROCESSOR EXCEPTION (AT and up)
INT 76 - IRQ14 - HARD DISK CONTROLLER (AT and later)
INT 77 - IRQ15 - RESERVED (AT,PS); POWER CONSERVATION (Compaq)
INT 78 - DOS extenders; multiple purposes
INT 79 - multiple purposes
INT 7A - Novell NetWare; IBM 3270; multiple purposes
INT 7B - multiple purposes
INT 7C - multiple purposes
INT 7D - multiple purposes

A to Z of C

640

INT 7E - RESERVED FOR DIP, Ltd. ROM LIBRARY; multiple purposes
INT 7F - multiple purposes
INT 80 - reserved for BASIC; multiple purposes
INT 81 - reserved for BASIC
INT 82 - reserved for BASIC
INT 83 - reserved for BASIC
INT 84 - reserved for BASIC
INT 85 - reserved for BASIC
INT 86 - IBM ROM BASIC - used while in interpreter; multiple purposes
INT 87 - IBM ROM BASIC - used while in interpreter
INT 88 - IBM ROM BASIC - used while in interpreter; multiple purposes
INT 89 - IBM ROM BASIC - used while in interpreter
INT 8A - IBM ROM BASIC - used while in interpreter
INT 8B - IBM ROM BASIC - used while in interpreter
INT 8C - IBM ROM BASIC - used while in interpreter
INT 8D - IBM ROM BASIC - used while in interpreter
INT 8E - IBM ROM BASIC - used while in interpreter
INT 8F - IBM ROM BASIC - used while in interpreter
INT 90 - IBM ROM BASIC - used while in interpreter
INT 91 - IBM ROM BASIC - used while in interpreter
INT 92 - IBM ROM BASIC - used while in interpreter; multiple purposes
INT 93 - IBM ROM BASIC - used while in interpreter
INT 94 - IBM ROM BASIC - used while in interpreter; multiple purposes
INT 95 - IBM ROM BASIC - used while in interpreter
INT 96 - IBM ROM BASIC - used while in interpreter
INT 97 - IBM ROM BASIC - used while in interpreter
INT 98 - IBM ROM BASIC - used while in interpreter
INT 99 - IBM ROM BASIC - used while in interpreter
INT 9A - IBM ROM BASIC - used while in interpreter
INT 9B - IBM ROM BASIC - used while in interpreter
INT 9C - IBM ROM BASIC - used while in interpreter
INT 9D - IBM ROM BASIC - used while in interpreter
INT 9E - IBM ROM BASIC - used while in interpreter
INT 9F - IBM ROM BASIC - used while in interpreter
INT A0 - IBM ROM BASIC - used while in interpreter
INT A1 - IBM ROM BASIC - used while in interpreter
INT A2 - IBM ROM BASIC - used while in interpreter
INT A3 - IBM ROM BASIC - used while in interpreter
INT A4 - IBM ROM BASIC - used while in interpreter
INT A5 - IBM ROM BASIC - used while in interpreter
INT A6 - IBM ROM BASIC - used while in interpreter
INT A7 - IBM ROM BASIC - used while in interpreter
INT A8 - IBM ROM BASIC - used while in interpreter
INT A9 - IBM ROM BASIC - used while in interpreter
INT AA - IBM ROM BASIC - used while in interpreter
INT AB - IBM ROM BASIC - used while in interpreter
INT AC - IBM ROM BASIC - used while in interpreter
INT AD - IBM ROM BASIC - used while in interpreter

 A to Z of C

641

INT AE - IBM ROM BASIC - used while in interpreter
INT AF - IBM ROM BASIC - used while in interpreter
INT B0 - IBM ROM BASIC - used while in interpreter
INT B1 - IBM ROM BASIC - used while in interpreter
INT B2 - IBM ROM BASIC - used while in interpreter
INT B3 - IBM ROM BASIC - used while in interpreter
INT B4 - IBM ROM BASIC - used while in interpreter
INT B5 - IBM ROM BASIC - used while in interpreter
INT B6 - IBM ROM BASIC - used while in interpreter
INT B7 - IBM ROM BASIC - used while in interpreter
INT B8 - IBM ROM BASIC - used while in interpreter
INT B9 - IBM ROM BASIC - used while in interpreter
INT BA - IBM ROM BASIC - used while in interpreter
INT BB - IBM ROM BASIC - used while in interpreter
INT BC - IBM ROM BASIC - used while in interpreter
INT BD - IBM ROM BASIC - used while in interpreter
INT BE - IBM ROM BASIC - used while in interpreter
INT BF - IBM ROM BASIC - used while in interpreter
INT C0 - IBM ROM BASIC - used while in interpreter
INT C1 - IBM ROM BASIC - used while in interpreter
INT C2 - IBM ROM BASIC - used while in interpreter
INT C3 - IBM ROM BASIC - used while in interpreter
INT C4 - IBM ROM BASIC - used while in interpreter
INT C5 - IBM ROM BASIC - used while in interpreter
INT C6 - IBM ROM BASIC - used while in interpreter
INT C7 - IBM ROM BASIC - used while in interpreter
INT C8 - IBM ROM BASIC - used while in interpreter
INT C9 - IBM ROM BASIC - used while in interpreter
INT CA - IBM ROM BASIC - used while in interpreter
INT CB - IBM ROM BASIC - used while in interpreter
INT CC - IBM ROM BASIC - used while in interpreter
INT CD - IBM ROM BASIC - used while in interpreter
INT CE - IBM ROM BASIC - used while in interpreter
INT CF - IBM ROM BASIC - used while in interpreter
INT D0 - IBM ROM BASIC - used while in interpreter
INT D1 - IBM ROM BASIC - used while in interpreter
INT D2 - IBM ROM BASIC - used while in interpreter
INT D3 - IBM ROM BASIC - used while in interpreter
INT D4 - IBM ROM BASIC - used while in interpreter
INT D5 - IBM ROM BASIC - used while in interpreter
INT D6 - IBM ROM BASIC - used while in interpreter
INT D7 - IBM ROM BASIC - used while in interpreter
INT D8 - IBM ROM BASIC - used while in interpreter
INT D9 - IBM ROM BASIC - used while in interpreter
INT DA - IBM ROM BASIC - used while in interpreter
INT DB - IBM ROM BASIC - used while in interpreter
INT DC - IBM ROM BASIC - used while in interpreter
INT DD - IBM ROM BASIC - used while in interpreter

A to Z of C

642

INT DE - IBM ROM BASIC - used while in interpreter
INT DF - IBM ROM BASIC - used while in interpreter
INT E0 - IBM ROM BASIC - used while in interpreter; multiple purposes
INT E1 - IBM ROM BASIC - used while in interpreter
INT E2 - IBM ROM BASIC - used while in interpreter
INT E3 - IBM ROM BASIC - used while in interpreter
INT E4 - IBM ROM BASIC - used while in interpreter
INT E5 - IBM ROM BASIC - used while in interpreter
INT E6 - IBM ROM BASIC - used while in interpreter
INT E7 - IBM ROM BASIC - used while in interpreter
INT E8 - IBM ROM BASIC - used while in interpreter
INT E9 - IBM ROM BASIC - used while in interpreter
INT EA - IBM ROM BASIC - used while in interpreter
INT EB - IBM ROM BASIC - used while in interpreter
INT EC - IBM ROM BASIC - used while in interpreter
INT ED - IBM ROM BASIC - used while in interpreter
INT EE - IBM ROM BASIC - used while in interpreter
INT EF - BASIC - ORIGINAL INT 09 VECTOR
INT F0 - BASICA.COM, GWBASIC, compiled BASIC - ORIGINAL INT 08 VECTOR
INT F1 - reserved for user interrupt
INT F2 - reserved for user interrupt
INT F3 - reserved for user interrupt
INT F4 - reserved for user interrupt
INT F5 - reserved for user interrupt
INT F6 - reserved for user interrupt
INT F7 - reserved for user interrupt
INT F8 - reserved for user interrupt
INT F9 - reserved for user interrupt
INT FA - reserved for user interrupt
INT FB - reserved for user interrupt
INT FC - reserved for user interrupt
INT FD - reserved for user interrupt
INT FE - AT/XT286/PS50+ - destroyed by return from protected mode
INT FF - AT/XT286/PS50+ - destroyed by return from protected mode

71.2.2 Listing
 Because of space constraint, here I provide only a few interrupts that I use much. The
reader is however suggested to check out the CD for complete information. As everyone
should be aware of the RBIL format, I present here without formatting it!

INT 00 C - CPU-generated - DIVIDE ERROR
Desc: generated if the divisor of a DIV or IDIV instruction is zero or the
 quotient overflows the result register; DX and AX will be unchanged.
Notes: on an 8086/8088, the return address points to the following instruction
 on an 80286+, the return address points to the divide instruction
 an 8086/8088 will generate this interrupt if the result of a division

 A to Z of C

643

 is 80h (byte) or 8000h (word)
SeeAlso: INT 04,OPCODE "AAD"
--------G-00---------------------------------
INT 00 - Zenith - ROM DEBUGGER
Desc: invokes the ROM Debugger when at the BIOS level; equivalent to
 pressing Ctrl-Alt-Ins on booting.
Note: since DOS revectors INT 00, it is necessary to restore this vector to
 its original ROM BIOS value in order to invoke the debugger once DOS
 loads
SeeAlso: INT 03"Columbia"
--------C-01---------------------------------
INT 01 C - CPU-generated - SINGLE STEP
Desc: generated after each instruction if TF (trap flag) is set; TF is
 cleared on invoking the single-step interrupt handler
Notes: interrupts are prioritized such that external interrupts are invoked
 after the INT 01 pushes CS:IP/FLAGS and clears TF, but before the
 first instruction of the handler executes
 used by debuggers for single-instruction execution tracing, such as
 MS-DOS DEBUG's T command
SeeAlso: INT 03"CPU"
--------C-01---------------------------------
INT 01 C - CPU-generated (80386+) - DEBUGGING EXCEPTIONS
Desc: generated by the CPU on various occurrences which may be of interest
 to a debugger program
Note: events which may trigger the interrupt:
 Instruction address breakpoint fault - will return to execute inst
 Data address breakpoint trap - will return to following instruction
 General detect fault, debug registers in use
 Task-switch breakpoint trap
 undocumented 386/486 opcode F1h - will return to following instruc
SeeAlso: INT 03"CPU"
--------H-02---------------------------------
INT 02 C - external hardware - NON-MASKABLE INTERRUPT
Desc: generated by the CPU when the input to the NMI pin is asserted
Notes: return address points to start of interrupted instruction on 80286+
 on the 80286+, further NMIs are disabled until the next IRET
 instruction, but one additional NMI is remembered by the hardware
 and will be serviced after the IRET instruction reenables NMIs
 maskable interrupts may interrupt the NMI handler if interrupts are
 enabled
 although the Intel documentation states that this interrupt is
 typically used for power-failure procedures, it has many other uses
 on IBM-compatible machines:
 Memory parity error: all except Jr, CONV, and some machines
 without memory parity
 Breakout switch on hardware debuggers
 Coprocessor interrupt: all except Jr and CONV
 Keyboard interrupt: Jr, CONV

A to Z of C

644

 I/O channel check: CONV, PS50+
 Disk-controller power-on request: CONV
 System suspend: CONV
 Real-time clock: CONV
 System watch-dog timer, time-out interrupt: PS50+
 DMA timer time-out interrupt: PS50+
 Low battery: HP 95LX
 Module pulled: HP 95LX
--------C-08---------------------------------
INT 08 C - CPU-generated (80286+) - DOUBLE EXCEPTION DETECTED
Desc: called when multiple exceptions occur on one instruction, or an
 exception occurs in an exception handler
Notes: called in protected mode if an interrupt above the defined limit of
 the interrupt vector table occurs
 return address points at beginning of instruction with errors or the
 beginning of the instruction which was about to execute when the
 external interrupt caused the exception
 if an exception occurs in the double fault handler, the CPU goes into
 SHUTDOWN mode (which circuitry in the PC/AT converts to a reset);
 this "triple fault" is a faster way of returning to real mode on
 many 80286 machines than the standard keyboard controller reset
--------H-09---------------------------------
INT 09 C - IRQ1 - KEYBOARD DATA READY
Desc: this interrupt is generated when data is received from the keyboard.
 This is normally a scan code (from either a keypress *or* a key
 release), but may also be an ACK or NAK of a command on AT-class
 keyboards.
Notes: this IRQ may be masked by setting bit 1 on I/O port 21h
 if the BIOS supports an enhanced (101/102-key) keyboard, it calls
 INT 15/AH=4Fh after reading the scan code (see #00006) from the
 keyboard and before further processing; all further processing uses
 the scan code returned from INT 15/AH=4Fh
 the default interrupt handler is at F000h:E987h in 100%-compatible
 BIOSes
 the interrupt handler performs the following actions for certain
 special keystrokes:
 Ctrl-Break clear keyboard buffer, place word 0000h in buffer,
 invoke INT 1B, and set flag at 0040h:0071h
 SysReq invoke INT 15/AH=85h (SysReq is often labeled SysRq)
 Ctrl-Numlock place system in a tight wait loop until next INT 09
 Ctrl-Alt-Del jump to BIOS startup code (either F000h:FFF0h or the
 destination of the jump at that address)
 Shift-PrtSc invoke INT 05
 Ctrl-Alt-Plus (HP Vectra) enable keyclick
 Ctrl-Alt-Plus (many clones) set clock speed to high
 Ctrl-Alt-Minus (HP Vectra) reduce keyclick volume
 Ctrl-Alt-Minus (many clones) set clock speed to low
 Ctrl-Alt-SysReq (HP Vectra) generate hard reset

 A to Z of C

645

 Ctrl-Alt-S (many clones) run BIOS setup program
 Ctrl-Alt-Esc (many clones) run BIOS setup program
 Ctrl-Alt-Ins (many clones) run BIOS setup program
 Ctrl-Alt-LeftShift-GrayMinus (some clones) turn off system cache
 Ctrl-Alt-LeftShift-GrayPlus (some clones) turn on system cache
 DR DOS hooks this interrupt to control the cursor shape (underscore/
 half block) for overwrite/insert mode
 DR Multiuser DOS hooks this interrupt for cursor shape control and to
 control whether Ctrl-Alt-Del reboots the current session or the
 entire system
SeeAlso: INT 05"PRINT SCREEN",INT 0B"HP 95LX",INT 15/AH=4Fh,INT 15/AH=85h
SeeAlso: INT 16/AH=00h,INT 16/AH=10h,INT 1B,INT 2F/AX=A901h,INT 4A/AH=00h"TI"
SeeAlso: INT 51"DESQview",INT 59"DoubleDOS",INT 79"GO32"

(Table 00006)
Values for keyboard make/break (scan) code:
 01h Esc 31h N
 02h 1 ! 32h M
 03h 2 @ 33h , < 63h F16
 04h 3 # 34h . > 64h F17
 05h 4 $ 35h / ? 65h F18
 06h 5 % 36h Right Shift 66h F19
 07h 6 ^ 37h Grey* 67h F20
 08h 7 & 38h Alt 68h F21 (Fn) [*]
 09h 8 * 39h SpaceBar 69h F22
 0Ah 9 (3Ah CapsLock 6Ah F23
 0Bh 0) 3Bh F1 6Bh F24
 0Ch - _ 3Ch F2 6Ch --
 0Dh = + 3Dh F3 6Dh EraseEOF
 0Eh Backspace 3Eh F4
 0Fh Tab 3Fh F5 6Fh Copy/Play
 10h Q 40h F6
 11h W 41h F7
 12h E 42h F8 72h CrSel
 13h R 43h F9 73h <delta> [*]
 14h T 44h F10 74h ExSel
 15h Y 45h NumLock 75h --
 16h U 46h ScrollLock 76h Clear
 17h I 47h Home 77h [Note2] Joyst But1
 18h O 48h UpArrow 78h [Note2] Joyst But2
 19h P 49h PgUp 79h [Note2] Joyst Right
 1Ah [{ 4Ah Grey- 7Ah [Note2] Joyst Left
 1Bh] } 4Bh LeftArrow 7Bh [Note2] Joyst Up
 1Ch Enter 4Ch Keypad 5 7Ch [Note2] Joyst Down
 1Dh Ctrl 4Dh RightArrow 7Dh [Note2] right mouse
 1Eh A 4Eh Grey+ 7Eh [Note2] left mouse
 1Fh S 4Fh End
 20h D 50h DownArrow

A to Z of C

646

 21h F 51h PgDn
 22h G 52h Ins
 23h H 53h Del
 24h J 54h SysReq ---non-key codes---
 25h K 55h [Note1] F11 00h kbd buffer full
 26h L 56h left \| (102-key)
 27h ; : 57h F11 AAh self-test complete
 28h ' " 58h F12 E0h prefix code
 29h ` ~ 59h [Note1] F15 E1h prefix code
 2Ah Left Shift 5Ah PA1 EEh ECHO
 2Bh \ | 5Bh F13 (LWin) F0h prefix code (key break)
 2Ch Z 5Ch F14 (RWin) FAh ACK
 2Dh X 5Dh F15 (Menu) FCh diag failure (MF-kbd)
 2Eh C FDh diag failure (AT-kbd)
 2Fh V FEh RESEND
 30h B FFh kbd error/buffer full
Notes: scan codes 56h-E1h are only available on the extended (101/102-key)
 keyboard and Host Connected (122-key) keyboard; scan codes 5Bh-5Dh
 are only available on the 122-key keyboard and the Microsoft Natural
 Keyboard; scan codes 5Eh-76h are only available on the 122-key
 keyboard
 in the default configuration, break codes are the make scan codes with
 the high bit set; make codes 60h,61h,70h, etc. are not available
 because the corresponding break codes conflict with prefix codes
 (code 2Ah is available because the self-test result code AAh is only
 sent on keyboard initialization). An alternate keyboard
 configuration can be enabled on AT and later systems with enhanced
 keyboards, in which break codes are the same as make codes, but
 prefixed with an F0h scan code
 prefix code E0h indicates that the following make/break code is for a
 "gray" duplicate to a key which existed on the original PC keyboard;
 prefix code E1h indicates that the following make code has no
 corresponding break code (currently only the Pause key generates no
 break code)
 the Microsoft Natural Keyboard sends make codes 5Bh, 5Ch, and 5Dh
 (all with an E0h prefix) for the Left Windows, Right Windows, and
 Menu keys on the bottom row
 the European "Cherry G81-3000 SAx/04" keyboard contains contacts for
 four additional keys, which can be made available by a user
 modification; the three new keys located directly below the cursor
 pad's Delete, End, and PgDn keys send make codes 66h-68h (F19-F21);
 the fourth new key, named <delta>, sends make code 73h
 the SysReq key is often labeled SysRq
 the "Accord" ergonomic keyboard with optional touchpad (no other
 identification visible on keyboard or in owner's booklet) has an
 additional key above the Grey- key marked with a left-pointing
 triangle and labeled "Fn" in the owner's booklet which returns
 scan codes E0h 68h on make and E0h E8h on break

 A to Z of C

647

 the "Preh Commander AT" keyboard with additional F11-F22 keys treats
 F11-F20 as Shift-F1..Shift-F10 and F21/F22 as Ctrl-F1/Ctrl-F2; the
 Eagle PC-2 keyboard with F11-F24 keys treated those additional keys
 in the same way
 [Note1] the "Cherry G80-0777" keyboard has additional F11-F15 keys
 which generate make codes 55h-59h; some other extended keyboards
 generate codes 55h and 56h for F11 and F12, which cannot be managed
 by standard DOS keyboard drivers
 [Note2] the Schneider/Amstrad PC1512 PC keyboards contain extra keys,
 a mouse, and a digital joystick, which are handled like extra keys.
 The joystick's motion scancodes are converted into standard arrow
 keys by the BIOS, and the joystick and mouse button scan codes are
 converted to FFFFh codes in the BIOS keyboard buffer
 (see CMOS 15h"AMSTRAD").
 In addition to the keys listed in the table above, there are
 Del-> (delete forward) 70h
 Enter 74h
SeeAlso: #00602 at INT 16/AX=6F07h,#03214 at INT 4A/AH=05h
--------H-0A---------------------------------
INT 0A - IRQ2 - ROLAND MPU MIDI INTERFACE
Note: newer Roland cards and MIDI interfaces by other manufacturers use
 a jumper-selectable IRQ, but software and hardware generally defaults
 to IRQ2
SeeAlso: INT 52"DESQview",INT 5A"DoubleDOS",INT 71,INT 7A"GO32"
--------V-1000-------------------------------
INT 10 - VIDEO - SET VIDEO MODE
 AH = 00h
 AL = desired video mode (see #00010)
Return: AL = video mode flag (Phoenix, AMI BIOS)
 20h mode > 7
 30h modes 0-5 and 7
 3Fh mode 6
 AL = CRT controller mode byte (Phoenix 386 BIOS v1.10)
Desc: specify the display mode for the currently active display adapter
--------V-1001-------------------------------
INT 10 - VIDEO - SET TEXT-MODE CURSOR SHAPE
 AH = 01h
 CH = cursor start and options (see #00013)
 CL = bottom scan line containing cursor (bits 0-4)
Return: nothing
Desc: specify the starting and ending scan lines to be occupied by the
 hardware cursor in text modes
Notes: buggy on EGA systems--BIOS remaps cursor shape in 43 line modes, but
 returns unmapped cursor shape
 UltraVision scales size to the current font height by assuming 14-line
 monochrome and 8-line color fonts; this call is not valid if cursor
 emulation has been disabled
 applications which wish to change the cursor by programming the

A to Z of C

648

 hardware directly on EGA or above should call INT 10/AX=1130h or
 read 0040h:0085h first to determine the current font height
 on some adapters, setting the end line greater than the number of lines
 in the font will result in the cursor extending to the top of the
 next character cell on the right
BUG: AMI 386 BIOS and AST Premier 386 BIOS will lock up the system if AL
 is not equal to the current video mode
SeeAlso: AH=03h,AX=CD05h,AH=12h/BL=34h,#03885

Bitfields for cursor start and options:
Bit(s) Description (Table 00013)
 7 should be zero
 6,5 cursor blink
 (00=normal, 01=invisible, 10=erratic, 11=slow)
 (00=normal, other=invisible on EGA/VGA)
 4-0 topmost scan line containing cursor
--------V-1002-------------------------------
INT 10 - VIDEO - SET CURSOR POSITION
 AH = 02h
 BH = page number
 0-3 in modes 2&3
 0-7 in modes 0&1
 0 in graphics modes
 DH = row (00h is top)
 DL = column (00h is left)
Return: nothing
SeeAlso: AH=03h,AH=05h,INT 60/DI=030Bh,MEM 0040h:0050h
--------V-1003-------------------------------
INT 10 - VIDEO - GET CURSOR POSITION AND SIZE
 AH = 03h
 BH = page number
 0-3 in modes 2&3
 0-7 in modes 0&1
 0 in graphics modes
Return: AX = 0000h (Phoenix BIOS)
 CH = start scan line
 CL = end scan line
 DH = row (00h is top)
 DL = column (00h is left)
Notes: a separate cursor is maintained for each of up to 8 display pages
 many ROM BIOSes incorrectly return the default size for a color display
 (start 06h, end 07h) when a monochrome display is attached
 With PhysTechSoft's PTS ROM-DOS the BH value is ignored on entry.
SeeAlso: AH=01h,AH=02h,AH=12h/BL=34h,MEM 0040h:0050h,MEM 0040h:0060h
--------V-1004-------------------------------
INT 10 - VIDEO - READ LIGHT PEN POSITION (except VGA)
 AH = 04h
Return: AH = light pen trigger flag

 A to Z of C

649

 00h not down/triggered
 01h down/triggered
 DH,DL = row,column of character light pen is on
 CH = pixel row (graphics modes 04h-06h)
 CX = pixel row (graphics modes with >200 rows)
 BX = pixel column
Desc: determine the current position and status of the light pen (if
 present)
Notes: on a CGA, returned column numbers are always multiples of 2 (320-
 column modes) or 4 (640-column modes)
 returned row numbers are only accurate to two lines
--------V-1004------------------------------------
INT 10 - HUNTER 16 - GET CURSOR ADDRESS
 AH = 04h
 BH = page
Return: DH = row (0..24)
 DL = column (0..79)
 CH = cursor pixel Y-address (0..199)
 CL = cursor pixel X-address (0..639)
Notes: the Husky Hunter 16 is an 8088-based ruggedized laptop. Other family
 members are the Husky Hunter, Husky Hunter 16/80, and Husky Hawk.
 pixel coordinates are for the lower left corner of the character cell
 containing the cursor
SeeAlso: AH=60h"HUNTER"
--------V-1005-------------------------------
INT 10 - VIDEO - SELECT ACTIVE DISPLAY PAGE
 AH = 05h
 AL = new page number (00h to number of pages - 1) (see #00010)
Return: nothing
Desc: specify which of possibly multiple display pages will be visible
Note: to determine whether the requested page actually exists, use AH=0Fh
 to query the current page after making this call
SeeAlso: AH=0Fh,AH=43h,AH=45h,MEM 0040h:0062h,MEM 0040h:004Eh
--------V-1006-------------------------------
INT 10 - VIDEO - SCROLL UP WINDOW
 AH = 06h
 AL = number of lines by which to scroll up (00h = clear entire window)
 BH = attribute used to write blank lines at bottom of window
 CH,CL = row,column of window's upper left corner
 DH,DL = row,column of window's lower right corner
Return: nothing
Note: affects only the currently active page (see AH=05h)
BUGS: some implementations (including the original IBM PC) have a bug which
 destroys BP
 the Trident TVGA8900CL (BIOS dated 1992/9/8) clears DS to 0000h when
 scrolling in an SVGA mode (800x600 or higher)
SeeAlso: AH=07h,AH=12h"Tandy 2000",AH=72h,AH=73h,AX=7F07h,INT 50/AX=0014h
--------V-1007-------------------------------

A to Z of C

650

INT 10 - VIDEO - SCROLL DOWN WINDOW
 AH = 07h
 AL = number of lines by which to scroll down (00h=clear entire window)
 BH = attribute used to write blank lines at top of window
 CH,CL = row,column of window's upper left corner
 DH,DL = row,column of window's lower right corner
Return: nothing
Note: affects only the currently active page (see AH=05h)
BUGS: some implementations (including the original IBM PC) have a bug which
 destroys BP
 the Trident TVGA8900CL (BIOS dated 1992/9/8) clears DS to 0000h when
 scrolling in an SVGA mode (800x600 or higher)
SeeAlso: AH=06h,AH=12h"Tandy 2000",AH=72h,AH=73h,INT 50/AX=0014h
--------V-1008-------------------------------
INT 10 - VIDEO - READ CHARACTER AND ATTRIBUTE AT CURSOR POSITION
 AH = 08h
 BH = page number (00h to number of pages - 1) (see #00010)
Return: AH = character's attribute (text mode only) (see #00014)
 AH = character's color (Tandy 2000 graphics mode only)
 AL = character
Notes: for monochrome displays, a foreground of 1 with background 0 is
 underlined
 the blink bit may be reprogrammed to enable intense background colors
 using AX=1003h or by programming the CRT controller
 the foreground intensity bit (3) can be programmed to switch between
 character sets A and B on EGA and VGA cards, thus enabling 512
 simultaneous characters on screen. In this case the bit's usual
 function (intensity) is regularly turned off.
 in graphics modes, only characters drawn with white foreground pixels
 are matched by the pattern-comparison routine
 on the Tandy 2000, BH=FFh specifies that the current page should be
 used
 because of the IBM BIOS specifications, there may exist some clone
 BIOSes which do not preserve SI or DI; the Novell DOS kernel
 preserves SI, DI, and BP before many INT 10h calls to avoid problems
 due to those registers not being preserved by the BIOS.
BUG: some IBM PC ROM BIOSes destroy BP when in graphics modes
SeeAlso: AH=09h,AX=1003h,AX=1103h,AH=12h/BL=37h,AX=5001h

Bitfields for character's display attribute:
Bit(s) Description (Table 00014)
 7 foreground blink or (alternate) background bright (see also AX=1003h)
 6-4 background color (see #00015)
 3 foreground bright or (alternate) alternate character set (see AX=1103h)
 2-0 foreground color (see #00015)
SeeAlso: #00026

(Table 00015)

 A to Z of C

651

Values for character color:
 Normal Bright
 000b black dark gray
 001b blue light blue
 010b green light green
 011b cyan light cyan
 100b red light red
 101b magenta light magenta
 110b brown yellow
 111b light gray white
--------V-1009-------------------------------
INT 10 - VIDEO - WRITE CHARACTER AND ATTRIBUTE AT CURSOR POSITION
 AH = 09h
 AL = character to display
 BH = page number (00h to number of pages - 1) (see #00010)
 background color in 256-color graphics modes (ET4000)
 BL = attribute (text mode) or color (graphics mode)
 if bit 7 set in <256-color graphics mode, character is XOR'ed
 onto screen
 CX = number of times to write character
Return: nothing
Notes: all characters are displayed, including CR, LF, and BS
 replication count in CX may produce an unpredictable result in graphics
 modes if it is greater than the number of positions remaining in the
 current row
 With PhysTechSoft's PTS ROM-DOS the BH, BL, and CX values are ignored
 on entry.
SeeAlso: AH=08h,AH=0Ah,AH=4Bh"GRAFIX",INT 17/AH=60h,INT 1F"SYSTEM DATA"
SeeAlso: INT 43"VIDEO DATA",INT 44"VIDEO DATA"
--------V-100B--BH00-------------------------
INT 10 - VIDEO - SET BACKGROUND/BORDER COLOR
 AH = 0Bh
 BH = 00h
 BL = background/border color (border only in text modes)
Return: nothing
SeeAlso: AH=0Bh/BH=01h
--------V-100F-------------------------------
INT 10 - VIDEO - GET CURRENT VIDEO MODE
 AH = 0Fh
Return: AH = number of character columns
 AL = display mode (see #00010 at AH=00h)
 BH = active page (see AH=05h)
Notes: if mode was set with bit 7 set ("no blanking"), the returned mode will
 also have bit 7 set
 EGA, VGA, and UltraVision return either AL=03h (color) or AL=07h
 (monochrome) in all extended-row text modes
 HP 200LX returns AL=07h (monochrome) if mode was set to AL=21h
 and always 80 resp. 40 columns in all text modes regardless of

A to Z of C

652

 current zoom setting (see AH=D0h)
 when using a Hercules Graphics Card, additional checks are necessary:
 mode 05h: if WORD 0040h:0063h is 03B4h, may be in graphics page 1
 (as set by DOSSHELL and other Microsoft software)
 mode 06h: if WORD 0040h:0063h is 03B4h, may be in graphics page 0
 (as set by DOSSHELL and other Microsoft software)
 mode 07h: if BYTE 0040h:0065h bit 1 is set, Hercules card is in
 graphics mode, with bit 7 indicating the page (mode set by
 Hercules driver for Borland Turbo C)
 the Tandy 2000 BIOS is only documented as returning AL, not AH or BH
SeeAlso: AH=00h,AH=05h,AX=10F2h,AX=1130h,AX=CD04h,MEM 0040h:004Ah
--------V-1010-------------------------------
INT 10 - Tandy 2000 - VIDEO - GET/SET CHARACTER FONTS
 AH = 10h
 AL = control value
 bit 0: set character set instead of reading it
 bit 1: high 128 characters instead of low 128 characters
 ES:BX -> new character set if AL bit 0 set
Return: ES:BX -> current character set if AL bit 0 clear on entry
Notes: this interrupt is identical to INT 52 on Tandy 2000
 the character set consists of 16 bytes for each of the 128 characters,
 where each of the 16 bytes describes the pixels in one scan line,
 most significant bit leftmost
SeeAlso: AH=00h,AH=0Bh/BH=02h,AH=11h"Tandy 2000",AH=12h"Tandy 2000"
SeeAlso: INT 52"Tandy 2000"
--------V-101104-----------------------------
INT 10 - VIDEO - TEXT-MODE CHARGEN - LOAD ROM 8x16 CHARACTER SET (VGA)
 AX = 1104h
 BL = block to load
Return: nothing
Notes: (see AX=1100h)
SeeAlso: AX=1100h,AX=1101h,AX=1102h,AX=1103h,AX=1114h,AH=1Bh,AX=CD10h
SeeAlso: MEM 0040h:0084h
Index: text mode;font|text mode;screen rows
--------J-1018-------------------------------
INT 10 - VIDEO - DOS/V - GET/SET FONT PATTERN
 AH = 18h
 AL = subfunction
 00h get font pattern
 01h set font pattern
 BX = 0000h
 CL = character size in bytes (01h,02h)
 CH = 00h
 DH = character width in pixels
 DL = character height in pixels
 ES:DI -> buffer for/containing font image
Return: AL = status (00h successful, else error)
 ES:DI buffer filled for function 00h if successful

 A to Z of C

653

Note: the supported font sizes are 8x16 single-byte, 8x19 single-byte,
 16x16 double-byte, and 24x24 double-byte
SeeAlso: AH=19h,INT 16/AH=14h
--------V-101E08-----------------------------
INT 10 - VIDEO - FLAT-PANEL - CONTRAST SETTING
 AX = 1E08h
 BH = function
 bit 7: =1 set contrast control, =0 query contrast
 bit 6: use standard contrast
 bits 5-0: reserved (0)
 ---if BH bits 7,6=10---
 BL = contrast (00h = minimum, FFh = maximum)
Return: AL = 1Eh if function supported
 BH = results
 bit 7: query/set (copied from input)
 bit 6: standard/custom (copied from input)
 bits 5-2: reserved (0)
 bit 1: software contrast control is supported
 bit 0: set operation was succesful (always clear on get)
 BL = contrast (00h = minimum, FFh = maximum)
Note: this function operates independently of AX=1E06h
SeeAlso: AX=1E00h,AX=1E06h,AX=1E07h
--------V-104F00-----------------------------
INT 10 - VESA SuperVGA BIOS (VBE) - GET SuperVGA INFORMATION
 AX = 4F00h
 ES:DI -> buffer for SuperVGA information (see #00077)
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 ES:DI buffer filled
 01h failed
 ---VBE v2.0---
 02h function not supported by current hardware configuration
 03h function invalid in current video mode
Desc: determine whether VESA BIOS extensions are present and the capabilities
 supported by the display adapter
SeeAlso: AX=4E00h,AX=4F01h,AX=7F00h"SOLLEX",AX=A00Ch
Index: installation check;VESA SuperVGA

Format of SuperVGA information:
Offset Size Description (Table 00077)
 00h 4 BYTEs (ret) signature ("VESA")
 (call) VESA 2.0 request signature ("VBE2"), required to receive
 version 2.0 info
 04h WORD VESA version number (one-digit minor version -- 0102h = v1.2)
 06h DWORD pointer to OEM name
 "761295520" for ATI
 0Ah DWORD capabilities flags (see #00078)

A to Z of C

654

 0Eh DWORD pointer to list of supported VESA and OEM video modes
 (list of words terminated with FFFFh)
 12h WORD total amount of video memory in 64K blocks
---VBE v1.x ---
 14h 236 BYTEs reserved
---VBE v2.0 ---
 14h WORD OEM software version (BCD, high byte = major, low byte = minor)
 16h DWORD pointer to vendor name
 1Ah DWORD pointer to product name
 1Eh DWORD pointer to product revision string
 22h WORD (if capabilities bit 3 set) VBE/AF version (BCD)
 0100h for v1.0P
 24h DWORD (if capabilities bit 3 set) pointer to list of supported
 accelerated video modes (list of words terminated with FFFFh)
 28h 216 BYTEs reserved for VBE implementation
100h 256 BYTEs OEM scratchpad (for OEM strings, etc.)
Notes: the list of supported video modes is stored in the reserved portion of
 the SuperVGA information record by some implementations, and it may
 thus be necessary to either copy the mode list or use a different
 buffer for all subsequent VESA calls
 not all of the video modes in the list of mode numbers may be
 supported, e.g. if they require more memory than currently installed
 or are not supported by the attached monitor. Check any mode you
 intend to use through AX=4F01h first.
 the 1.1 VESA document specifies 242 reserved bytes at the end, so the
 buffer should be 262 bytes to ensure that it is not overrun; for
 v2.0, the buffer should be 512 bytes
 the S3 specific video modes will most likely follow the FFFFh
 terminator at the end of the standard modes. A search must then
 be made to find them, FFFFh will also terminate this second list
 in some cases, only a "stub" VBE may be present, supporting only
 AX=4F00h; this case may be assumed if the list of supported video
 modes is empty (consisting of a single word of FFFFh)

Bitfields for VESA capabilities:
Bit(s) Description (Table 00078)
 0 DAC can be switched into 8-bit mode
 1 non-VGA controller
 2 programmed DAC with blank bit (i.e. only during blanking interval)
 3 (VBE v3.0) controller supports hardware stereoscopic signalling
 3 controller supports VBE/AF v1.0P extensions
 4 (VBE v3.0) if bit 3 set:
 =0 stereo signalling via external VESA stereo connector
 =1 stereo signalling via VESA EVC connector
 4 (VBE/AF v1.0P) must call EnableDirectAccess to access framebuffer
 5 (VBE/AF v1.0P) controller supports hardware mouse cursor
 6 (VBE/AF v1.0P) controller supports hardware clipping
 7 (VBE/AF v1.0P) controller supports transparent BitBLT

 A to Z of C

655

 8-31 reserved (0)
SeeAlso: #00077,AX=4F09h
--------V-104F01-----------------------------
INT 10 - VESA SuperVGA BIOS - GET SuperVGA MODE INFORMATION
 AX = 4F01h
 CX = SuperVGA video mode (see #04082 for bitfields)
 ES:DI -> 256-byte buffer for mode information (see #00079)
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 ES:DI buffer filled
 01h failed
Desc: determine the attributes of the specified video mode
SeeAlso: AX=4F00h,AX=4F02h

Bitfields for VESA/VBE video mode number:
Bit(s) Description (Table 04082)
 15 preserve display memory on mode change
 14 (VBE v2.0+) use linear (flat) frame buffer
 13 (VBE/AF 1.0P) VBE/AF initializes accelerator hardware
 12 reserved for VBE/AF
 11 (VBE v3.0) user user-specified CRTC refresh rate values
 10-9 reserved for future expansion
 8-0 video mode number (0xxh are non-VESA modes, 1xxh are VESA-defined)

Format of VESA SuperVGA mode information:
Offset Size Description (Table 00079)
 00h WORD mode attributes (see #00080)
 02h BYTE window attributes, window A (see #00081)
 03h BYTE window attributes, window B (see #00081)
 04h WORD window granularity in KB
 06h WORD window size in KB
 08h WORD start segment of window A (0000h if not supported)
 0Ah WORD start segment of window B (0000h if not supported)
 0Ch DWORD -> FAR window positioning function (equivalent to AX=4F05h)
 10h WORD bytes per scan line
---remainder is optional for VESA modes in v1.0/1.1, needed for OEM modes---
 12h WORD width in pixels (graphics) or characters (text)
 14h WORD height in pixels (graphics) or characters (text)
 16h BYTE width of character cell in pixels
 17h BYTE height of character cell in pixels
 18h BYTE number of memory planes
 19h BYTE number of bits per pixel
 1Ah BYTE number of banks
 1Bh BYTE memory model type (see #00082)
 1Ch BYTE size of bank in KB
 1Dh BYTE number of image pages (less one) that will fit in video RAM
 1Eh BYTE reserved (00h for VBE 1.0-2.0, 01h for VBE 3.0)

A to Z of C

656

---VBE v1.2+ ---
 1Fh BYTE red mask size
 20h BYTE red field position
 21h BYTE green mask size
 22h BYTE green field size
 23h BYTE blue mask size
 24h BYTE blue field size
 25h BYTE reserved mask size
 26h BYTE reserved mask position
 27h BYTE direct color mode info
 bit 0: color ramp is programmable
 bit 1: bytes in reserved field may be used by application
---VBE v2.0+ ---
 28h DWORD physical address of linear video buffer
 2Ch DWORD pointer to start of offscreen memory
 30h WORD KB of offscreen memory
---VBE v3.0 ---
 32h WORD bytes per scan line in linear modes
 34h BYTE number of images (less one) for banked video modes
 35h BYTE number of images (less one) for linear video modes
 36h BYTE linear modes: size of direct color red mask (in bits)
 37h BYTE linear modes: bit position of red mask LSB (e.g. shift count)
 38h BYTE linear modes: size of direct color green mask (in bits)
 39h BYTE linear modes: bit position of green mask LSB (e.g. shift count)
 3Ah BYTE linear modes: size of direct color blue mask (in bits)
 3Bh BYTE linear modes: bit position of blue mask LSB (e.g. shift count)
 3Ch BYTE linear modes: size of direct color reserved mask (in bits)
 3Dh BYTE linear modes: bit position of reserved mask LSB
 3Eh DWORD maximum pixel clock for graphics video mode, in Hz
 42h 190 BYTEs reserved (0)
Note: while VBE 1.1 and higher will zero out all unused bytes of the buffer,
 v1.0 did not, so applications that want to be backward compatible
 should clear the buffer before calling

Bitfields for VESA SuperVGA mode attributes:
Bit(s) Description (Table 00080)
 0 mode supported by present hardware configuration
 1 optional information available (must be =1 for VBE v1.2+)
 2 BIOS output supported
 3 set if color, clear if monochrome
 4 set if graphics mode, clear if text mode
---VBE v2.0+ ---
 5 mode is not VGA-compatible
 6 bank-switched mode not supported
 7 linear framebuffer mode supported
 8 double-scan mode available (e.g. 320x200 and 320x240)
---VBE v3.0 ---
 9 interlaced mode available

 A to Z of C

657

 10 hardware supports triple buffering
 11 hardware supports stereoscopic display
 12 dual display start address support
 13-15 reserved
---VBE/AF v1.0P---
 9 application must call EnableDirectAccess before calling bank-switching
 functions
SeeAlso: #00079

Bitfields for VESA SuperVGA window attributes:
Bit(s) Description (Table 00081)
 0 exists
 1 readable
 2 writable
 3-7 reserved
SeeAlso: #00079

(Table 00082)
Values for VESA SuperVGA memory model type:
 00h text
 01h CGA graphics
 02h HGC graphics
 03h 16-color (EGA) graphics
 04h packed pixel graphics
 05h "sequ 256" (non-chain 4) graphics
 06h direct color (HiColor, 24-bit color)
 07h YUV (luminance-chrominance, also called YIQ)
 08h-0Fh reserved for VESA
 10h-FFh OEM memory models
SeeAlso: #00079
--------V-104F02-----------------------------
INT 10 - VESA SuperVGA BIOS - SET SuperVGA VIDEO MODE
 AX = 4F02h
 BX = new video mode (see #04082,#00083,#00084)
 ES:DI -> (VBE 3.0+) CRTC information block, bit mode bit 11 set
 (see #04083)
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 01h failed
Notes: bit 13 may only be set if the video mode is present in the list of
 accelerated video modes returned by AX=4F00h
 if the DAC supports both 8 bits per primary color and 6 bits, it will
 be reset to 6 bits after a mode set; use AX=4F08h to restore 8 bits
SeeAlso: AX=4E03h,AX=4F00h,AX=4F01h,AX=4F03h,AX=4F08h

(Table 00083)
Values for VESA video mode:

A to Z of C

658

 00h-FFh OEM video modes (see #00010 at AH=00h)
 100h 640x400x256
 101h 640x480x256
 102h 800x600x16
 103h 800x600x256
 104h 1024x768x16
 105h 1024x768x256
 106h 1280x1024x16
 107h 1280x1024x256
 108h 80x60 text
 109h 132x25 text
 10Ah 132x43 text
 10Bh 132x50 text
 10Ch 132x60 text
---VBE v1.2+ ---
 10Dh 320x200x32K
 10Eh 320x200x64K
 10Fh 320x200x16M
 110h 640x480x32K
 111h 640x480x64K
 112h 640x480x16M
 113h 800x600x32K
 114h 800x600x64K
 115h 800x600x16M
 116h 1024x768x32K
 117h 1024x768x64K
 118h 1024x768x16M
 119h 1280x1024x32K (1:5:5:5)
 11Ah 1280x1024x64K (5:6:5)
 11Bh 1280x1024x16M
---VBE 2.0+ ---
 120h 1600x1200x256
 121h 1600x1200x32K
 122h 1600x1200x64K
81FFh special full-memory access mode
Notes: the special mode 81FFh preserves the contents of the video memory and
 gives access to all of the memory; VESA recommends that the special
 mode be a packed-pixel mode. For VBE 2.0+, it is required that the
 VBE implement the mode, but not place it in the list of available
 modes (mode information for this mode can be queried directly,
 however).
 as of VBE 2.0, VESA will no longer define video mode numbers
SeeAlso: #00010,#00011,#00084,#00191
Index: video modes;VESA

(Table 00084)
Values for S3 OEM video mode:
 201h 640x480x256

 A to Z of C

659

 202h 800x600x16
 203h 800x600x256
 204h 1024x768x16
 205h 1024x768x256
 206h 1280x960x16
 207h 1152x864x256 (Diamond Stealth 64)
 208h 1280x1024x16
 209h 1152x864x32K
 20Ah 1152x864x64K (Diamond Stealth 64)
 20Bh 1152x864x4G
 211h 640x480x64K (Diamond Stealth 24)
 211h 640x400x4G (Diamond Stealth64 Video / Stealth64 Graphics)
 212h 640x480x16M (Diamond Stealth 24)
 301h 640x480x32K
Note: these modes are only available on video cards using S3's VESA driver
SeeAlso: #00083,#00191,#00732 at INT 1A/AX=B102h
Index: video modes;S3

Format of VESA VBE CRTC Information Block:
Offset Size Description (Table 04083)
 00h WORD total number of pixels horizontally
 02h WORD horizontal sync start (in pixels)
 04h WORD horizontal sync end (in pixels)
 06h WORD total number of scan lines
 08h WORD vertical sync start (in scan lines)
 0Ah WORD vertical sync end (in scan lines)
 0Ch BYTE flags (see #04084)
 0Dh DWORD pixel clock, in Hz
 11h WORD refresh rate, in 0.01 Hz units
 this field MUST be set to pixel_clock / (HTotal * VTotal),
 even though it may not actually be used by the VBE
 implementation
 13h 40 BYTEs reserved

Bitfields for VESA VBE CRTC Information Block flags:
Bit(s) Description (Table 04084)
 0 enable double scanning
 1 enable interlacing
 2 horizontal sync polarity (0 positive, 1 negative)
 3 vertical sync polarity (0 positive, 1 negative)
SeeAlso: #04083
--------V-104F03-----------------------------
INT 10 - VESA SuperVGA BIOS - GET CURRENT VIDEO MODE
 AX = 4F03h
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 BX = video mode (see #00083,#00084)

A to Z of C

660

 bit 13: VBE/AF v1.0P accelerated video mode
 bit 14: linear frame buffer enabled (VBE v2.0+)
 bit 15: don't clear video memory
 01h failed
SeeAlso: AH=0Fh,AX=4E04h,AX=4F02h
--------V-104F04-----------------------------
INT 10 - VESA SuperVGA BIOS - SAVE/RESTORE SuperVGA VIDEO STATE
 AX = 4F04h
 DL = subfunction
 00h get state buffer size
 Return: BX = number of 64-byte blocks needed
 01h save video states
 ES:BX -> buffer
 02h restore video states
 ES:BX -> buffer
 CX = states to save/restore (see #00085)
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 01h failed
SeeAlso: AH=1Ch,AX=5F90h,AX=5FA0h

Bitfields for VESA SuperVGA states to save/restore:
Bit(s) Description (Table 00085)
 0 video hardware state
 1 video BIOS data state
 2 video DAC state
 3 SuperVGA register state
SeeAlso: #00048,#00186
--------s-104F13BX0002-----------------------
INT 10 - VESA VBE/AI (Audio Interface) - QUERY DEVICE
 AX = 4F13h
 BX = 0002h
 CX = handle
 DX = query
 0001h return length of GeneralDeviceClass
 0002h return copy of GeneralDeviceClass (see #00112)
 0003h return length of Volume Info Structure
 0004h return copy of Volume Info Structure (see #00122)
 0005h return length of Volume Services Structure
 0006h return copy of Volume Services Structure (see #00124)
 0007h-000Fh reserved
 0010h-FFFFh device-specific
 SI:DI -> buffer (functions 0002h,0004h,0006h)
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 SI:DI = length (functions 1,3,5)

 A to Z of C

661

 SI:DI buffer filled (functions 2,4,6)
 01h failed
Note: functions 0003h to 0006h are only supported for the Volume device

Format of GeneralDeviceClass structure:
Offset Size Description (Table 00112)
 00h 4 BYTEs name of the structure ("GENI")
 04h DWORD structure length
 08h WORD type of device (1=Wave, 2=MIDI)
 0Ah WORD version of VESA driver support (0100h for 1.00)
 10h var for CX=handle for Wave device:
 Wave Info structure (see #00113)
 some bytes ???
 for CX=handle for MIDI device:
 MIDI Info Structure (see #00118)
 first 8 bytes of MIDI Service Structure ???
SeeAlso: #00122,#00124

Format of WAVE Info Structure:
Offset Size Description (Table 00113)
 00h 4 BYTEs name of the structure ("WAVI")
 04h DWORD structure length [0000007Eh]
 08h DWORD driver software version [00000003h]
 0Ch 32 BYTEs vendor name, etc. (ASCIZ string)
 2Ch 32 BYTEs vendor product name
 4Ch 32 BYTEs vendor chip/hardware description
 6Ch BYTE installed board number
 6Dh 3 BYTEs unused data
 70h DWORD feature bits (see #00114)
 74h WORD user determined preference field
 76h WORD memory required for driver use [0200h]
 78h WORD number of timer tick callbacks per second [0000h]
 7Ah WORD channels: 1 = mono, 2 = stereo
 stereo is assumed to be interleaved data
 7Ch WORD bitfield of max sample sizes (see #00115)
SeeAlso: #00118

Bitfields for Wave feature bits:
Bit(s) Description (Table 00114)
 0 8000hz Mono Playback
 1 8000hz Mono Record
 2 8000hz Stereo Record
 3 8000hz Stereo Playback
 4 8000hz Full Duplex Play/Record
 5 11025hz Mono Playback
 6 11025hz Mono Record
 7 11025hz Stereo Record
 8 11025hz Stereo Playback

A to Z of C

662

 9 11025hz Full Duplex Play/Record
 10 22050hz Mono Playback
 11 22050hz Mono Record
 12 22050hz Stereo Record
 13 22050hz Stereo Playback
 14 22050hz Full Duplex Play/Record
 15 44100hz Mono Playback
 16 44100hz Mono Record
 17 44100hz Stereo Record
 18 44100hz Stereo Playback
 19 44100hz Full Duplex Play/Record
 20-26 reserved (0)
 27 driver must pre-handle the data
 28 Variable Sample mono playback
 29 Variable Sample stereo playback
 30 Variable Sample mono record
 31 Variable Sample stereo record

(Table 00115)
Values for Sample data size:
 01h 8bit play
 02h 16bit play
 10h 8bit record
 20h 16bit record

Format of WAVE Audio Services structure:
Offset Size Description (Table 00116)
 00h 4 BYTEs name of the structure
 04h DWORD structure length
 08h 16 BYTEs for future expansion
---entry points (details???)---
 18h DWORD DeviceCheck
 11h compression (see also #00117)
 12h driver state
 13h get current pos
 14h sample rate
 15h set preference
 16h get DMA,IRQ
 17h get IO address
 18h get mem address
 19h get mem free
 1Ah full duplex
 1Bh get block size
 1Ch get PCM format
 1Dh enable PCM format
 80h-.. vendors can add DevChks above 0x80
 1Ch DWORD PCMInfo
 20h DWORD PlayBlock

 A to Z of C

663

 24h DWORD PlayCont
 28h DWORD RecordBlock
 2Ch DWORD RecordCont
 30h DWORD PauseIO
 34h DWORD ResumeIO
 38h DWORD StopIO
 3Ch DWORD WavePrepare
 40h DWORD WaveRegister
 44h DWORD GetLastError
 01h unsupported feature/function
 02h bad sample rate
 03h bad block length
 04h bad block address
 05h app. missed an IRQ
 06h don't understand the PCM size/format
 80h-.. vendors specific errors
 48h DWORD TimerTick
 4Ch DWORD ApplPSyncCB: CallBack: play filled in by the app
 50h DWORD ApplRSyncCB: CallBack: rec filled in by the app
SeeAlso: #00120,#00124

(Table 00117)
Values for type of compression:
 01h IMA play
 02h ALAW play
 03h ULAW play
 11h IMA record
 12h ALAW record
 13h ULAW record

Format of MIDI Info Structure:
Offset Size Description (Table 00118)
 00h 4 BYTEs name of the structure ("MIDI")
 04h DWORD structure length
 08h DWORD driver software version [00000003h]
 0Ch 32 BYTEs vendor name, etc. (ASCIZ string)
 2Ch 32 BYTEs vendor product name
 4Ch 32 BYTEs vendor chip/hardware description
 6Ch BYTE installed board number
 6Dh 3 BYTEs unused data
 70h 14 BYTEs the patch library file name [OPL2.BNK 00..]
 7Eh DWORD feature bits (see #00119)
 80h WORD user determined preference field
 82h WORD memory required for driver use
 84h WORD # of timer tick callbacks per second
 86h WORD max # of tones (voices, partials)
SeeAlso: #00112,#00120,#00122

A to Z of C

664

Bitfields for MIDI feature bits:
Bit(s) Description (Table 00119)
 0-3 reserved for GM extensions
 4 Transmitter/Receiver only
 5 Patches preloaded
 6 MIDI receive has time stamp
 8 MIDI interrupt driven input supported
 9 MIDI polled input supported
 10 MIDI remote patches supported

Format of MIDI Service structure:
Offset Size Description (Table 00120)
 00h 4 BYTEs name of the structure ("MIDS")
 04h DWORD structure length
 08h 16 WORDs patches loaded table bit field
 28h 16 BYTEs for future expansion
---entry points (details???)---
 38h DWORD device check
 11h return available tones
 12h return TRUE/FALSE if patch is understood
 13h set preference
 14h allow/disallow voice stealing
 15h get FIFO sizes
 16h get DMA,IRQ
 17h get IO address
 18h get mem address
 19h get mem free
 80h-.. vendors can add DevChks above 0x80
 3Ch DWORD global reset
 40h DWORD MIDI msg
 44h DWORD poll MIDI
 48h DWORD preload patch
 4Ch DWORD unload patch
 50h DWORD timer tick
 54h DWORD get last error
 01h unsupported feature/function
 02h unknown patch type (see #00121)
 03h all tones are used
 04h messages are out of sync
 05h an incoming patch was incomplete
 06h an incoming patch couldn't be stored
 07h had to drop an incoming byte
 08h driver is failing a patch download
 80h-.. vendors specific errors
 58h DWORD Patch Block free callback
 5Ch DWORD MIDI byte avail. callback
SeeAlso: #00116,#00124

 A to Z of C

665

(Table 00121)
Values for MIDI Registered Patch Types:
 10h OPL2
 11h OPL3

Format of Volume Info Structure:
Offset Size Description (Table 00122)
 00h 4 BYTEs name of the structure ("VOLI")
 04h DWORD structure length (00000092h)
 08h DWORD driver software version [00000001h]
 0Ch 32 BYTEs vendor name, etc. (ASCIZ string)
 2Ch 32 BYTEs vendor product name
 4Ch 32 BYTEs vendor chip/hardware description
 6Ch BYTE installed board number (0 for 1st/only board)
 6Dh 3 BYTEs unused data (0)
 70h 24 BYTEs text name of the mixer channel
 88h DWORD features bits (see #00123)
 8Ch WORD minimum volume setting
 8Eh WORD maximum volume setting
 90h WORD attenuation/gain crossover
SeeAlso: #00112,#00124

Bitfields for Volume feature bits:
Bit(s) Description (Table 00123)
 0 Stereo Volume control available
 2 Low Pass Filter is available
 3 High Pass Filter is available
 4 Parametric Tone Control is available
 5 selectable output paths
 8 Azimuth Field positioning supported
 9 Phi Field positioning supported
 10-30 unused???
 31 Master Volume device

Format of Volume Services Structure:
Offset Size Description (Table 00124)
 00h 4 BYTEs name of the structure ("VOLS")
 04h DWORD structure length (00000038h)
 08h 16 BYTEs 16 bytes for future expansion (0)
---entry points (details???)---
 18h DWORD device check
 0011h filter range
 0012h filter setting
 0013h filter current
 0014h tone range
 0015h tone setting
 0016h tone current
 0017h path

A to Z of C

666

 0018h get IO address
 0080h-.. vendors can add DevChks above 0x80
 1Ch DWORD set vol to an absolute setting
 01h User master volume setting
 02h application master volume setting
 20h DWORD set 3D volume
 24h DWORD tone control
 28h DWORD filter control
 2Ch DWORD output path
 30h DWORD reset channel
 34h DWORD get last error
 01h unsupported feature/function
 02h out of range parameter value
 80h+ vendor-specific errors
SeeAlso: #00116,#00120
--------s-104F13BX0003-----------------------
INT 10 - VESA VBE/AI (Audio Interface) - OPEN DEVICE
 AX = 4F13h
 BX = 0003h
 CX = handle
 DX = API set (16/32-bit)
 SI = segment ???
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 SI:CX -> memory ???
 01h failed
SeeAlso: AX=4F13h/BX=0000h,AX=4F13h/BX=0002h,AX=4F13h/BX=0004h
--------s-104F13BX0004-----------------------
INT 10 - VESA VBE/AI (Audio Interface) - CLOSE DEVICE
 AX = 4F13h
 BX = 0004h
 CX = handle
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 01h failed
SeeAlso: AX=4F13h/BX=0000h,AX=4F13h/BX=0003h,AX=4F13h/BX=0005h
--------s-104F13BX0005-----------------------
INT 10 - VESA VBE/AI (Audio Interface) - UNINSTALL DRIVER
 AX = 4F13h
 BX = 0005h
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 01h failed
SeeAlso: AX=4F13h/BX=0000h,AX=4F13h/BX=0006h
--------s-104F13BX0006-----------------------

 A to Z of C

667

INT 10 - VESA VBE/AI (Audio Interface) - DRIVER CHAIN/UNCHAIN
 AX = 4F13h
 BX = 0006h
Return: AL = 4Fh if function supported
 AH = status
 00h successful
 01h failed
SeeAlso: AX=4F13h/BX=0000h,AX=4F13h/BX=0005h
INT 13 - DISK - GET DRIVE PARAMETERS (PC,XT286,CONV,PS,ESDI,SCSI)
 AH = 08h
 DL = drive (bit 7 set for hard disk)
 ES:DI = 0000h:0000h to guard against BIOS bugs
Return: CF set on error
 AH = status (07h) (see #00234)
 CF clear if successful
 AH = 00h
 AL = 00h on at least some BIOSes
 BL = drive type (AT/PS2 floppies only) (see #00242)
 CH = low eight bits of maximum cylinder number
 CL = maximum sector number (bits 5-0)
 high two bits of maximum cylinder number (bits 7-6)
 DH = maximum head number
 DL = number of drives
 ES:DI -> drive parameter table (floppies only)
Notes: may return successful even though specified drive is greater than the
 number of attached drives of that type (floppy/hard); check DL to
 ensure validity
 for systems predating the IBM AT, this call is only valid for hard
 disks, as it is implemented by the hard disk BIOS rather than the
 ROM BIOS
 the IBM ROM-BIOS returns the total number of hard disks attached
 to the system regardless of whether DL >= 80h on entry.
 Toshiba laptops with HardRAM return DL=02h when called with DL=80h,
 but fail on DL=81h. The BIOS data at 40h:75h correctly reports 01h.
 may indicate only two drives present even if more are attached; to
 ensure a correct count, one can use AH=15h to scan through possible
 drives
 Reportedly some Compaq BIOSes with more than one hard disk controller
 return only the number of drives DL attached to the corresponding
 controller as specified by the DL value on entry. However, on
 Compaq machines with "COMPAQ" signature at F000h:FFEAh,
 MS-DOS/PC DOS IO.SYS/IBMBIO.COM call INT 15/AX=E400h and
 INT 15/AX=E480h to enable Compaq "mode 2" before retrieving the count
 of hard disks installed in the system (DL) from this function.
 the maximum cylinder number reported in CX is usually two less than
 the total cylinder count reported in the fixed disk parameter table
 (see INT 41h,INT 46h) because early hard disks used the last cylinder
 for testing purposes; however, on some Zenith machines, the maximum

A to Z of C

668

 cylinder number reportedly is three less than the count in the fixed
 disk parameter table.
 for BIOSes which reserve the last cylinder for testing purposes, the
 cylinder count is automatically decremented
 on PS/1s with IBM ROM DOS 4, nonexistent drives return CF clear,
 BX=CX=0000h, and ES:DI = 0000h:0000h
 machines with lost CMOS memory may return invalid data for floppy
 drives. In this situation CF is cleared, but AX,BX,CX,DX,DH,DI,
 and ES contain only 0. At least under some circumstances, MS-DOS/
 PC DOS IO.SYS/IBMBIO.COM just assumes a 360 KB floppy if it sees
 CH to be zero for a floppy.
 the PC-Tools PCFORMAT program requires that AL=00h before it will
 proceed with the formatting
 if this function fails, an alternative way to retrieve the number
 of floppy drives installed in the system is to call INT 11h.
 In fact, the MS-DOS/PC-DOS IO.SYS/IBMBIO.COM attempts to get the
 number of floppy drives installed from INT 13/AH=08h, when INT 11h
 AX bit 0 indicates there are no floppy drives installed. In addition
 to testing the CF flag, it only trusts the result when the number of
 sectors (CL preset to zero) is non-zero after the call.
BUGS: several different Compaq BIOSes incorrectly report high-numbered
 drives (such as 90h, B0h, D0h, and F0h) as present, giving them the
 same geometry as drive 80h; as a workaround, scan through disk
 numbers, stopping as soon as the number of valid drives encountered
 equals the value in 0040h:0075h
 a bug in Leading Edge 8088 BIOS 3.10 causes the DI,SI,BP,DS, and ES
 registers to be destroyed
 some Toshiba BIOSes (at least before 1995, maybe some laptops???
 with 1.44 MB floppies) have a bug where they do not set the ES:DI
 vector even for floppy drives. Hence these registers should be
 preset with zero before the call and checked to be non-zero on
 return before using them. Also it seems these BIOSes can return
 wrong info in BL and CX, as S/DOS 1.0 can be configured to preset
 these registers as for an 1.44 MB floppy.
 the PS/2 Model 30 fails to reset the bus after INT 13/AH=08h and
 INT 13/AH=15h. A workaround is to monitor for these functions
 and perform a transparent INT 13/AH=01h status read afterwards.
 This will reset the bus. The MS-DOS 6.0 IO.SYS takes care of
 this by installing a special INT 13h interceptor for this purpose.
 AD-DOS may leave interrupts disabled on return from this function.
 Some Microsoft software explicitly sets STI after return.
SeeAlso: AH=06h"Adaptec",AH=13h"SyQuest",AH=48h,AH=15h,INT 1E
SeeAlso: INT 41"HARD DISK 0"

(Table 00242)
Values for diskette drive type:
 01h 360K
 02h 1.2M

 A to Z of C

669

 03h 720K
 04h 1.44M
 05h ??? (reportedly an obscure drive type shipped on some IBM machines)
 2.88M on some machines (at least AMI 486 BIOS)
 06h 2.88M
 10h ATAPI Removable Media Device
--------b-1584-------------------------------
INT 15 - V20-XT-BIOS - JOYSTICK SUPPORT
 AH = 84h
 DX = subfunction
 0000h read joystick switches
 Return: AL bits 7-4 = switch settings
 other: read positions of joysticks as indicated by bits 0-3
 Return: AX = X position of joystick A (if DX bit 0 set)
 BX = Y position of joystick A (if DX bit 1 set)
 CX = X position of joystick B (if DX bit 2 set)
 DX = Y position of joystick B (if DX bit 3 set)
Return: CF set on error
 AH = status (see #00496)
 CF clear if successful
Program: V20-XT-BIOS is a ROM BIOS replacement with extensions by Peter
 Koehlmann / c't magazine
SeeAlso: AH=84h"PS",INT 10/AH=0Eh/CX=ABCDh
--------B-1B---------------------------------
INT 1B C - KEYBOARD - CONTROL-BREAK HANDLER
Desc: this interrupt is automatically called when INT 09 determines that
 Control-Break has been pressed
Note: normally points to a short routine in DOS which sets the Ctrl-C flag,
 thus invoking INT 23h the next time DOS checks for Ctrl-C.
SeeAlso: INT 23,MEM 0040h:0071h
--------B-1C---------------------------------
INT 1C - TIME - SYSTEM TIMER TICK
Desc: this interrupt is automatically called on each clock tick by the INT 08
 handler
Notes: this is the preferred interrupt to chain when a program needs to be
 invoked regularly
 not available on NEC 9800-series PCs
SeeAlso: INT 08,INT E2"PC Cluster"
--------D-2100-------------------------------
INT 21 - DOS 1+ - TERMINATE PROGRAM
 AH = 00h
 CS = PSP segment
Notes: Microsoft recommends using INT 21/AH=4Ch for DOS 2+
 this function sets the program's return code (ERRORLEVEL) to 00h
 execution continues at the address stored in INT 22 after DOS performs
 whatever cleanup it needs to do (restoring the INT 22,INT 23,INT 24
 vectors from the PSP assumed to be located at offset 0000h in the
 segment indicated by the stack copy of CS, etc.)

A to Z of C

670

 if the PSP is its own parent, the process's memory is not freed; if
 INT 22 additionally points into the terminating program, the
 process is effectively NOT terminated
 not supported by MS Windows 3.0 DOSX.EXE DOS extender
SeeAlso: AH=26h,AH=31h,AH=4Ch,INT 20,INT 22
--------D-2101-------------------------------
INT 21 - DOS 1+ - READ CHARACTER FROM STANDARD INPUT, WITH ECHO
 AH = 01h
Return: AL = character read
Notes: ^C/^Break are checked, and INT 23 executed if read
 ^P toggles the DOS-internal echo-to-printer flag
 ^Z is not interpreted, thus not causing an EOF if input is redirected
 character is echoed to standard output
 standard input is always the keyboard and standard output the screen
 under DOS 1.x, but they may be redirected under DOS 2+
SeeAlso: AH=06h,AH=07h,AH=08h,AH=0Ah
--------v-21010F-----------------------------
INT 21 - VIRUS - "Susan" - INSTALLATION CHECK
 AX = 010Fh
Return: AX = 7553h ("Su") if resident
SeeAlso: INT 16/AH=DDh"VIRUS",INT 21/AX=0B56h
--------D-2102-------------------------------
INT 21 - DOS 1+ - WRITE CHARACTER TO STANDARD OUTPUT
 AH = 02h
 DL = character to write
Return: AL = last character output (despite the official docs which state
 nothing is returned) (at least DOS 2.1-7.0)
Notes: ^C/^Break are checked, and INT 23 executed if pressed
 standard output is always the screen under DOS 1.x, but may be
 redirected under DOS 2+
 the last character output will be the character in DL unless DL=09h
 on entry, in which case AL=20h as tabs are expanded to blanks
 if standard output is redirected to a file, no error checks (write-
 protected, full media, etc.) are performed
SeeAlso: AH=06h,AH=09h
--------D-2103-------------------------------
INT 21 - DOS 1+ - READ CHARACTER FROM STDAUX
 AH = 03h
Return: AL = character read
Notes: keyboard checked for ^C/^Break, and INT 23 executed if detected
 STDAUX is usually the first serial port
SeeAlso: AH=04h,INT 14/AH=02h,INT E0/CL=03h
--------D-2104-------------------------------
INT 21 - DOS 1+ - WRITE CHARACTER TO STDAUX
 AH = 04h
 DL = character to write
Notes: keyboard checked for ^C/^Break, and INT 23 executed if detected
 STDAUX is usually the first serial port

 A to Z of C

671

 if STDAUX is busy, this function will wait until it becomes free
SeeAlso: AH=03h,INT 14/AH=01h,INT E0/CL=04h
--------D-2105-------------------------------
INT 21 - DOS 1+ - WRITE CHARACTER TO PRINTER
 AH = 05h
 DL = character to print
Notes: keyboard checked for ^C/^Break, and INT 23 executed if detected
 STDPRN is usually the first parallel port, but may be redirected under
 DOS 2+
 if the printer is busy, this function will wait
SeeAlso: INT 17/AH=00h
--------D-2131-------------------------------
INT 21 - DOS 2+ - TERMINATE AND STAY RESIDENT
 AH = 31h
 AL = return code
 DX = number of paragraphs to keep resident
Return: never
Notes: the value in DX only affects the memory block containing the PSP;
 additional memory allocated via AH=48h is not affected
 the minimum number of paragraphs which will remain resident is 11h
 for DOS 2.x and 06h for DOS 3.0+
 most TSRs can save some memory by releasing their environment block
 before terminating (see #01378 at AH=26h,AH=49h)
 any open files remain open, so one should close any files which will
 not be used before going resident; to access a file which is left
 open from the TSR, one must switch PSP segments first (see AH=50h)
SeeAlso: AH=00h,AH=4Ch,AH=4Dh,INT 20,INT 22,INT 27
--------D-2132-------------------------------
INT 21 - DOS 2+ - GET DOS DRIVE PARAMETER BLOCK FOR SPECIFIC DRIVE
 AH = 32h
 DL = drive number (00h = default, 01h = A:, etc)
Return: AL = status
 00h successful
 DS:BX -> Drive Parameter Block (DPB) (see #01395) for specified
 drive
 FFh invalid or network drive
Notes: the OS/2 compatibility box supports the DOS 3.3 version of this call
 except for the DWORD at offset 12h
 this call updates the DPB by reading the disk; the DPB may be accessed
 via the DOS list of lists (see #01627 at AH=52h) if disk access is not
 desirable.
 undocumented prior to the release of DOS 5.0; only the DOS 4.0+
 version of the DPB has been documented, however
 supported by DR DOS 3.41+; DR DOS 3.41-6.0 return the same data as
 MS-DOS 3.31
 IBM ROM-DOS v4.0 also reports invalid/network (AL=FFh) on the ROM drive
SeeAlso: AH=1Fh,AH=52h,AX=7302h

A to Z of C

672

Format of DOS Drive Parameter Block:
Offset Size Description (Table 01395)
 00h BYTE drive number (00h = A:, 01h = B:, etc)
 01h BYTE unit number within device driver
 02h WORD bytes per sector
 04h BYTE highest sector number within a cluster
 05h BYTE shift count to convert clusters into sectors
 06h WORD number of reserved sectors at beginning of drive
 08h BYTE number of FATs
 09h WORD number of root directory entries
 0Bh WORD number of first sector containing user data
 0Dh WORD highest cluster number (number of data clusters + 1)
 16-bit FAT if greater than 0FF6h, else 12-bit FAT
 0Fh BYTE number of sectors per FAT
 10h WORD sector number of first directory sector
 12h DWORD address of device driver header (see #01646)
 16h BYTE media ID byte (see #01356)
 17h BYTE 00h if disk accessed, FFh if not
 18h DWORD pointer to next DPB
---DOS 2.x---
 1Ch WORD cluster containing start of current directory, 0000h=root,
 FFFFh = unknown
 1Eh 64 BYTEs ASCIZ pathname of current directory for drive
---DOS 3.x---
 1Ch WORD cluster at which to start search for free space when writing
 1Eh WORD number of free clusters on drive, FFFFh = unknown
---DOS 4.0-6.0---
 0Fh WORD number of sectors per FAT
 11h WORD sector number of first directory sector
 13h DWORD address of device driver header (see #01646)
 17h BYTE media ID byte (see #01356)
 18h BYTE 00h if disk accessed, FFh if not
 19h DWORD pointer to next DPB
 1Dh WORD cluster at which to start search for free space when writing,
 usually the last cluster allocated
 1Fh WORD number of free clusters on drive, FFFFh = unknown
SeeAlso: #01357,#01663,#01787 at AX=7302h,#04039 at INT E0/CL=71h
--------D-213305-----------------------------
INT 21 - DOS 4.0+ - GET BOOT DRIVE
 AX = 3305h
Return: DL = boot drive (1=A:,...)
Notes: This function does not use any of the DOS-internal stacks and may
 thus be called at any time. It is directly dispatched from
 the INT 21h entry point with interrupts disabled.
 NEC 9800-series PCs always call the boot drive A: and assign the other
 drive letters sequentially to the other drives in the system
 this call is supported by OS/2 Warp 3.0, but not earlier versions of
 OS/2; it is also supported by Novell DOS 7

 A to Z of C

673

--------D-215D0B-----------------------------
INT 21 OU - DOS 4.x only - internal - GET DOS SWAPPABLE DATA AREAS
 AX = 5D0Bh
Return: CF set on error
 AX = error code (see #01680)
 CF clear if successful
 DS:SI -> swappable data area list (see #01689)
Notes: copying and restoring the swappable data areas allows DOS to be
 reentered unless it is in a critical section delimited by calls to
 INT 2A/AH=80h and INT 2A/AH=81h,82h
 SHARE and other DOS utilities consult the byte at offset 04h in the
 DOS data segment (see INT 2F/AX=1203h) to determine the SDA format
 in use: 00h = DOS 3.x, 01h = DOS 4.0-6.0, other = error.
 DOS 5+ use the SDA format listed below, but revert back to the DOS 3.x
 call for finding the SDA (see #01687); Novell DOS 7 does not support
 this function, either.
SeeAlso: AX=5D06h,INT 2A/AH=80h,INT 2A/AH=81h,INT 2A/AH=82h,INT 2F/AX=1203h

Format of DOS 4.x swappable data area list:
Offset Size Description (Table 01689)
 00h WORD count of data areas
 02h N BYTEs "count" copies of data area record
 Offset Size Description
 00h DWORD address
 04h WORD length and type
 bit 15 set if swap always, clear if swap in DOS
 bits 14-0: length in bytes
SeeAlso: #01690

Format of DOS 4.0-6.0 swappable data area:
Offset Size Description (Table 01690)
 -34 BYTE printer echo flag (00h off, FFh active)
 -31 BYTE current switch character (ignored by DOS 5+)
 -30 BYTE current memory allocation strategy (see AH=58h)
 -28 BYTE incremented on each INT 21/AX=5E01h call
 -27 16 BYTEs machine name set by INT 21/AX=5E01h
 -11 5 WORDs zero-terminated list of offsets which need to be patched to
 enable critical-section calls (see INT 2A/AH=80h)
 (all offsets are 0D0Ch, but this list is still present for
 DOS 3.x compatibility)
 -1 BYTE unused padding
Note: the above data is not actually part of the SDA, and is much more likely
 to change between DOS versions/OEMs than data in the SDA itself
---start of actual SDA---
 00h BYTE critical error flag ("ErrorMode")
 01h BYTE InDOS flag (count of active INT 21 calls)
 02h BYTE drive on which current critical error occurred or FFh
 (DR DOS 3.41/5.0 set this to 00h when no critical error)

A to Z of C

674

 03h BYTE locus of last error
 04h WORD extended error code of last error
 06h BYTE suggested action for last error
 07h BYTE class of last error
 08h DWORD ES:DI pointer for last error
 0Ch DWORD current DTA (Disk Transfer Address)
 note: may point into SDA during the DOS EXEC function
 (see AH=4Bh), so programs which swap the SDA must be
 prepared to move the DTA to a private buffer if they
 might be invoked during an EXEC
 10h WORD current PSP
 12h WORD stores SP across an INT 23
 14h WORD return code from last process termination (zerod after reading
 with AH=4Dh)
 16h BYTE current drive
 17h BYTE extended break flag
 18h BYTE flag: code page switching
 19h BYTE flag: copy of previous byte in case of INT 24 Abort
---remainder need only be swapped if in DOS---
 1Ah WORD value of AX on call to INT 21
 Note: does not contain correct value on functions 00h-0Ch,
 50h, 51h, 59h, or 62h
 1Ch WORD PSP segment for sharing/network (0000h = local)
 1Eh WORD network machine number for sharing/network (0000h = local)
 20h WORD first usable memory block found when allocating memory
 22h WORD best usable memory block found when allocating memory
 24h WORD last usable memory block found when allocating memory
 26h WORD memory size in paragraphs (used only during initialization)
 28h WORD last entry checked during directory search
 2Ah BYTE flag: nonzero if INT 24 Fail
 2Bh BYTE flags: allowable INT 24 responses (passed to INT 24 in AH)
 2Ch BYTE flag: do not set directory if nonzero
 2Dh BYTE flag: program aborted by ^C
 2Eh BYTE flag: allow embedded blanks in FCB
 may also allow use of "*" wildcard in FCBs
 2Fh BYTE padding (unused)
 30h BYTE day of month
 31h BYTE month
 32h WORD year - 1980
 34h WORD number of days since 01jan1980
 36h BYTE day of week (0 = Sunday)
 37h BYTE flag: console swapped during read from device
 38h BYTE flag: safe to call INT 28 if nonzero
 39h BYTE flag: abort currently in progress, turn INT 24 Abort into Fail
 3Ah 30 BYTEs device driver request header (see #02597 at INT 2F/AX=0802h) for
 device calls
 58h DWORD pointer to device driver entry point (used in calling driver)
 5Ch 22 BYTEs device driver request header for I/O calls

 A to Z of C

675

 72h 14 BYTEs device driver request header for disk status check (also
 includes following eight bytes for some calls)
 80h DWORD pointer to device I/O buffer
 84h WORD part of request header at 72h
 86h WORD part of request header at 72h (0)
 88h BYTE type of PSP copy (00h=simple for INT 21/AH=26h, FFh=make child)
 89h DWORD start offset of file region to lock/unlock
 8Dh DWORD length of file region to lock/unlock
 91h BYTE padding (unused)
 92h 3 BYTEs 24-bit user number (see AH=30h)
 95h BYTE OEM number (see #01394 at AH=30h)
 96h 6 BYTEs CLOCK$ transfer record (see #01688 at AX=5D06h)
 9Ch BYTE device I/O buffer for single-byte I/O functions
 9Dh BYTE padding
 9Eh 128 BYTEs buffer for filename
11Eh 128 BYTEs buffer for filename (rename destination name)
19Eh 21 BYTEs findfirst/findnext search data block (see #01626 at AH=4Eh)
1B3h 32 BYTEs directory entry for found file (see #01394 at AH=11h)
1D3h 88 BYTEs copy of current directory structure for drive being accessed
22Bh 11 BYTEs FCB-format filename for device name comparison
236h BYTE terminating NUL for above filename
237h 11 BYTEs wildcard destination specification for rename (FCB format)
242h BYTE terminating NUL for above filespec
243h BYTE padding???
244h WORD destination starting sector (cluster???)
246h 5 BYTEs extra space to allow a directory entry to be stored starting
 at offset 22Bh
24Bh BYTE extended FCB file attributes
24Ch BYTE type of FCB (00h regular, FFh extended)
24Dh BYTE directory search attributes
24Eh BYTE file open/access mode
24Fh BYTE flag: nonzero if file was deleted
250h BYTE flag: device name found on rename, or file not found
251h BYTE flag: splice file name and directory name together
252h BYTE flag indicating how DOS function was invoked
 (00h = direct INT 20/INT 21, FFh = server call AX=5D00h)
253h BYTE sector position within cluster
254h BYTE flag: translating sector/cluster
255h BYTE flag: 00h if read, 01h if write
256h BYTE current working drive number
257h BYTE cluster factor
258h BYTE "sda_CLUSSPLIT" flag: cluster split between two FAT sectors
259h BYTE line edit (AH=0Ah) insert mode flag (nonzero = on)
25Ah BYTE canonicalized filename referred to existing file/dir if FFh
25Bh BYTE volume ID flag
25Ch BYTE type of process termination (00h-03h) (see AH=4Dh)
25Dh BYTE unused (padding for alignment)
25Eh BYTE file create flag (00h = no, search only)

A to Z of C

676

25Fh BYTE value for deleted file's first byte: 00h to delete all, else E5
260h DWORD pointer to Drive Parameter Block for critical error invocation
264h DWORD pointer to stack frame containing user registers on INT 21
268h WORD stores SP across INT 24
26Ah DWORD pointer to DOS Drive Parameter Block for ???
26Eh WORD segment of disk buffer
270h DWORD saving partial cluster number
274h WORD "sda_PREREAD" 00h if preread, 01h if optional
276h WORD temporary used in allocating disk space
278h BYTE Media ID byte returned by AH=1Bh,1Ch
279h BYTE unused
27Ah DWORD pointer to device header if filename is character device
27Eh DWORD pointer to current SFT
282h DWORD pointer to current directory structure for drive being accessed
286h DWORD pointer to caller's FCB
28Ah WORD SFT index to which file being opened will refer
28Ch WORD temporary storage for file handle
28Eh DWORD pointer to JFT entry (for file being opened) in process handle
 table (see #01378 at AH=26h)
292h WORD "sda_WFP_START" offset in DOS DS of first filename argument
294h WORD "sda_REN_WFP" offset in DOS DS of second filename argument
296h WORD offset of last component in pathname or FFFFh
298h WORD offset of transfer address to add
29Ah WORD last relative cluster within file being accessed
29Ch WORD temp: absolute cluster number being accessed
29Eh DWORD directory sector number
2A2h WORD directory cluster number
2A4h DWORD current relative sector number within file
2A8h DWORD current sector number (number of previously written sectors)
2ACh WORD current byte offset within sector
2AEh DWORD current offset in file
2B2h WORD number of bytes in first sector
2B4h WORD bytes in partial last sector
2B6h WORD number of whole sectors
2B8h WORD free file cluster entry
2BAh WORD last file cluster entry
2BCh WORD next file cluster number
2BEh DWORD number of bytes appended to file
2C2h DWORD pointer to current work disk buffer
2C6h DWORD pointer to working SFT
2CAh WORD used by INT 21 dispatcher to store caller's BX
2CCh WORD used by INT 21 dispatcher to store caller's DS
2CEh WORD temporary storage while saving/restoring caller's registers
2D0h DWORD pointer to prev call frame (offset 264h) if INT 21 reentered
 also switched to for duration of INT 24
2D4h WORD open mode/action for INT 21/AX=6C00h
2D6h BYTE extended open conditional flag
 set to 00h by INT 21h dispatcher, 02h when a read is

 A to Z of C

677

 performed, and 01h or 03h by INT 21/AX=6C00h
2D7h WORD extended open I/O mode
2D9h DWORD stored ES:DI for AX=6C00h
2DDh WORD extended file open action code (see #01770 at AX=6C00h)
2DFh WORD extended file open attributes (see #01769 at AX=6C00h)
2E1h WORD extended file open file mode (see AX=6C00h)
2E3h DWORD pointer to filename to open (see AX=6C00h)
2E7h WORD high word of 32-bit sector number, or temp data buffer size
 from disk buffer
2E9h WORD "sda_OffsetMagicPatch"
2EBh BYTE disk full on >32M partition when set to 01h
2ECh WORD stores DS during call to [List-of-Lists + 37h]
2EEh WORD temporary storage (various uses)
2F0h BYTE storage for drive error
2F1h WORD DOS 3.4 (European MS-DOS 4.00) bit flags
2F3h DWORD pointer to user-supplied filename
2F7h DWORD pointer to user-supplied rename destination filename
2FBh WORD stores SS during call to [List-of-Lists + 37h] and INT 25,26
2FDh WORD stores SP during call to [List-of-Lists + 37h] and INT 25,26
2FFh BYTE flag, nonzero if stack switched in calling [List-of-Lists+37h]
300h 21 BYTEs FindFirst search data for source file(s) of a rename operation
 (see #01626 at AH=4Eh)
315h 32 BYTEs directory entry for file being renamed (see #01352 at AH=11h)
335h 331 BYTEs critical error stack
480h 384 BYTEs disk stack (functions greater than 0Ch, INT 25,INT 26)
600h 384 BYTEs character I/O stack (functions 01h through 0Ch)
780h BYTE device driver lookahead flag (usually printer)
 (see AH=64h"DOS 3.2+")
781h BYTE volume change flag
782h BYTE flag: virtual file open
783h BYTE fastseek drive
784h WORD fastseek first cluster number
786h WORD fastseek logical cluster number
788h WORD fastseek returned logical cluster number
78Ah WORD temporary location of DOS@SYSINIT
---MSDOS 7.1+ (FAT32)---
78Ch 47 BYTEs ???
7BBh BYTE flag: absolute disk read/write type
 00h = INT 25/INT 26
 01h = INT 21/AX=7305h
7BCh WORD high word of directory cluster number at offset 2A2h
7BEh WORD high word of cluster number at offset 29Ch
7C0h WORD high word of next file cluster number at offset 2BCh
7C2h WORD high word of last relative cluster number at offset 29Ah
7C4h WORD high word of temp at offset 276h
7C6h WORD high word of offset 244h
7C8h WORD high word of EBX
7CAh WORD high word of EDX used by "PACK"

A to Z of C

678

7CCh WORD high word of EDI used by "UNPACK"
7CEh WORD high word of EBX used by "SETDIRSRCH"
7D0h WORD high word of ECX used by "FREECLUSTER"
7D2h WORD high word of EDI used by "GETEOF"
7D4h 3 WORDs ???
Note: the only fields which remain valid BETWEEN calls to INT 21h are those
 in the initial "swap-always" portion of the SDA
SeeAlso: #01687,#01689
--------D-215E00-----------------------------
INT 21 - DOS 3.1+ network - GET MACHINE NAME
 AX = 5E00h
 DS:DX -> 16-byte buffer for ASCII machine name
Return: CF clear if successful
 CH = validity
 00h name invalid
 nonzero valid
 CL = NetBIOS number for machine name
 DS:DX buffer filled with blank-paded name
 CF set on error
 AX = error code (01h) (see #01680 at AH=59h)
Note: supported by OS/2 v1.3+ compatibility box, PC-NFS
SeeAlso: AX=5E01h

--------D-2171-------------------------------
INT 21 - Windows95 - LONG FILENAME FUNCTIONS
 AH = 71h
 AL = function
 0Dh reset drive (see AX=710Dh)
 39h create directory (see AX=7139h)
 3Ah remove directory (see AX=713Ah)
 3Bh set current directory (see AX=713Bh)
 41h delete file (see AX=7141h)
 43h get/set file attributes (see AX=7143h)
 47h get current directory (see AX=7147h)
 4Eh find first file (see AX=714Eh)
 4Fh find next file (see AX=714Fh)
 56h move (rename) file (see AX=7156h)
 60h truename (see AX=7160h/CL=00h,AX=7160h/CL=02h)
 6Ch create/open file (see AX=716Ch)
 A0h get volume information (see AX=71A0h)
 A1h terminate FindFirst/FindNext (see AX=71A1h)
 A6h get file information (see AX=71A6h)
 A7h time conversion (see AX=71A7h/BL=00h,AX=71A7h/BL=01h)
 A8h generate short filename (see AX=71A8h)
 A9h server create/open file (see AX=71A9h)
 AAh create/terminate SUBST (see AX=71AAh/BH=00h,AX=71AAh/BH=02h)
Return: CF set on error
 AX = error code (see #01680)

 A to Z of C

679

 7100h if function not supported
 CF clear if successful
 other registers as for corresponding "old" DOS function
Notes: if error 7100h is returned, the old-style function should be called
 AX=714Eh returns a "search handle" which must be passed to AX=714Fh;
 when the search is complete, AX=71A1h must be called to terminate
 the search
 for compatibility with DOS versions prior to v7.00, the carry flag
 should be set on call to ensure that it is set on exit
 Caldera's DPMS-enabled LONGNAME.EXE BETA 1 extension for DR-DOS 7
 supports the following sub-set of LFN functions: 39h, 3Ah, 3Bh, 41h,
 43h (BL = 0, 1 only), 47h, 4Eh, 4Fh, 56h, 60h (CL = 0, 1, 2), 6Ch,
 A0h, A1h, A8h. BETA 2 fixes LFN directory entry checksums, which
 were causing wrong LFNs to be attached to a file. The 8.3 short
 names for filenames with exactly 8 chars are no longer abbreviated
 (e.g. LONGNAME.TXT -> LONGNAME.TXT, not LONGNA~1.TXT). BETA 3 has
 A7h (BL=0, 1) functions added, and 4Eh/4Fh can return file times
 in both DOS and 64 bit formats, BETA 4 has support added for
 Caldera's DRFAT32 redirector extension (see INT 2F/AX=15xxh).
 Caldera's DR-OpenDOS 7.02+ COMMAND.COM utilizes the LFN API as soon
 as it detects it (mind, that LONGNAME.EXE can be dynamically loaded
 and unloaded at runtime). This COMMAND.COM shell also works under
 MS-DOS/PC DOS and in DOS boxes of Windows9x, NT, 2000, and OS/2.
 For 4DOS 6.02+ to work with 3rd party LFN providers, the Win95LFN=Yes
 directive should be inserted into the 4DOS.INI file.
 Mike Podanoffsky's RxDOS 7.2 provides most of this API natively,
 including functions 39h, 3Ah, 3Bh, 41h, 43h (BL = ???), 47h, 4Bh,
 4Eh, 4Fh, 56h, 60h (CL = 0, 1, 2, no CH), 6Ch, A0h, A1h and A7h.
 However, not all sub-functions seem to be supported yet.
SeeAlso: AH=39h,AH=3Ah,AH=3Bh,AH=41h,AX=4300h,AX=4301h,AX=4304h,AX=4306h
SeeAlso: AX=4307h,AH=47h,AH=4Eh,AH=4Fh,AH=56h,AH=6Ch,AX=714Eh,AX=714Fh
--------N-21E1--SF04-------------------------
INT 21 O - Novell NetWare - MESSAGE SERVICES - SEND PERSONAL MESSAGE
 AH = E1h subfn 04h
 DS:SI -> request buffer (see #01826)
 ES:DI -> reply buffer (see #01827)
Return: AL = status
 00h successful
 FEh I/O error or out of dynamic workspace
Notes: this function is supported by NetWare 4.0+ and Advanced NetWare 1.0-2.x
 message pipes use CPU time on the file server; IPX, SPX, or NetBIOS
 connections should be used for peer-to-peer communications as these
 protocols do not use file server time
SeeAlso: AH=E1h/SF=00h,AH=E1h/SF=05h,AH=E1h/SF=06h,AH=E1h/SF=08h

Format of NetWare "Send Personal Message" request buffer:
Offset Size Description (Table 01826)
 00h WORD length of following data (max E5h)

A to Z of C

680

 02h BYTE 04h (subfunction "Send Personal Message")
 03h BYTE number of connections (01h-64h)
 04h N BYTEs list of connections to receive broadcast message
 BYTE length of message (01h-7Eh)
 N BYTEs message (no control characters or characters > 7Eh)
SeeAlso: #01827

Format of NetWare "Send Personal Message" reply buffer:
Offset Size Description (Table 01827)
 00h WORD (call) size of following results buffer (max 65h)
 02h BYTE number of connections
 03h N BYTEs list of per-connection results
 00h successful
 FCh message rejected because queue is full (contains 6 msgs)
 FDh incomplete pipe
 FFh failed
SeeAlso: #01826
--------N-21E1--SF05-------------------------
INT 21 O - Novell NetWare - MESSAGE SERVICES - GET PERSONAL MESSAGE
 AH = E1h subfn 05h
 DS:SI -> request buffer (see #01828)
 ES:DI -> reply buffer (see #01829)
Return: AL = status
 00h successful
 FEh out of dynamic workspace
Desc: return the oldest message in the default file server's message queue
 for the calling workstation
Note: this function is supported by NetWare 4.0+ and Advanced NetWare 1.0-2.x
SeeAlso: AH=E1h/SF=01h,AH=E1h/SF=04h,AH=E1h/SF=06h,AH=E1h/SF=08h

Format of NetWare "Get Personal Message" request buffer:
Offset Size Description (Table 01828)
 00h WORD 0001h (length of following data)
 02h BYTE 05h (subfunction "Get Personal Message")
SeeAlso: #01829

Format of NetWare "Get Personal Message" reply buffer:
Offset Size Description (Table 01829)
 00h WORD (call) size of following results buffer (max 80h)
 02h BYTE connection number of sending station
 03h BYTE length of message (00h-7Eh)
 00h if no personal messages pending
 04h N BYTEs message (no control characters or characters > 7Eh)
SeeAlso: #01828
--------D-23---------------------------------
INT 23 - DOS 1+ - CONTROL-C/CONTROL-BREAK HANDLER
---DOS 1.x---
Return: AH = 00h abort program

