

“What comes out of a man is what makes him ‘unclean’.”

Backtracking Algorithms

Have you ever seen poor blind people walking in roads? If they find any obstacles in their
way, they would just move backward. Then they will proceed in other direction. How a blind
person could move backward when he finds obstacles? Simple answer…by intelligence!
Similarly, if a algorithm backtracks with intelligence, wonderful isn’t it?

61.1 Recursive Maze Algorithm
 Recursive maze algorithm is one of the good example for backtracking algorithms. In fact
Recursive maze algorithm is one of the most available solutions for solving maze.

61.2 Maze
 Maze is an area surrounded by walls; in between you have a path from starting position to
ending position. We have to start from the starting point and travel towards the ending point

61.3 Principle of Maze
As explained above, in maze we have to travel from the starting point to ending point.

The problem is to choose the path. If we find any dead-end before ending
point, we have to backtrack and change the direction. The direction for
traversing be North, East, West and South. We have to continue “move and
backtrack” until we reach the ending point.

Assume that we are having a two-dimensional maze
cell[WIDTH][HEIGHT]. Here cell[x][y] = 1 denotes wall and
cell[x][y] = 0 denotes free cell in the particular location x, y in the
maze. The directions we can move in the array are North, East, West and
South. The first step is to make the boundary of the two-dimensional array as 1 so that we won’t
go out of the maze, and always reside inside the maze at any time.

Now start moving from the starting position (since the boundary is filled by 1) and find
the next free cell, then move to the next free cell and so on. If we reach a dead-end, we have to
backtrack and make the cells in the path as 1(wall). Continue the same process till the ending
point is reached.

61

Example Maze
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 1 1 0 1 1 1
1 1 1 0 0 0 1
1 1 1 1 1 0 1
1 1 1 1 1 1 1

 A to Z of C

599

61.4 Program
 The following program finds whether there is a path available between the two positions
in maze or not. Here I have used (1, 1) and (8, 10) as the two positions.

/*---
Maze
by

K. Joseph Wesley
http://JosephWesley.itgo.com

---*/

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

typedef int BOOLEAN;

#define WIDTH (12)
#define HEIGHT (10)

#define TRUE (1)
#define FALSE (0)

int cell[10][12] = {
 {1,1,1,1,1,1,1,1,1,1,1,1},
 {1,0,0,0,0,1,1,1,1,1,1,1},
 {1,1,0,0,0,1,1,1,0,1,1,1},
 {1,1,0,1,0,0,0,0,0,1,1,1},
 {1,1,0,1,0,0,0,0,0,1,1,1},
 {1,1,0,1,0,0,0,0,0,0,1,1},
 {1,1,0,1,0,0,0,0,0,0,0,1},
 {1,1,0,0,0,0,0,0,0,0,0,1},
 {1,1,0,0,0,0,0,0,0,0,0,1},
 {1,1,1,1,1,1,1,1,1,1,1,1}
 };

void PrintMatrix(void)
{
 int i, j;
 for(i=0;i <HEIGHT; ++i)
 {
 for(j=0; j<WIDTH ; ++j)
 printf("%2d", cell[i][j]);
 printf("\n");
 }
} /*--PrintMatrix()-----*/

A to Z of C

600

void Traverse(BOOLEAN *pathavailable, int x1, int y1, int x2, int y2)
{
 if (x1 == x2 && y1 == y2)
 *pathavailable = TRUE;
 if(cell[x1][y1] == 0)
 {
 cell[x1][y1] = 1;
 Traverse(pathavailable, x1, y1+1, x2, y2);
 Traverse(pathavailable, x1+1, y1, x2, y2);
 Traverse(pathavailable, x1, y1-1, x2, y2);
 Traverse(pathavailable, x1-1, y1, x2, y2);
 }
} /*--Traverse()------*/

int main(void)
{
 BOOLEAN pathavailable = FALSE;
 clrscr();
 printf("Original Maze: \n");
 PrintMatrix();
 Traverse(&pathavailable, 1, 1, 8, 10);
 printf("Maze after operations: \n");
 PrintMatrix();
 printf("Path is %s available \n", (pathavailable)? "" : "NOT");
 getch();
 return (0);
} /*--main()--------*/

Exercises

1. Find out other backtracking problems.
2. Solve 8 Queen problem.

