

Part VI

Algorithms & C

�To die for a religion is easier than to live it absolutely�
 �Jorge Luis Borges

�Whoever makes himself humble will be made great.�

CORDIC

CORDIC (COordinate Rotation DIgital Computer) Algorithm is heavily used for
implementing mathematical functions, especially in scientific calculators. But unfortunately this
neat algorithm is not much known to people. Also people who know this algorithm keep it closed
and badly documented. So I thought this good algorithm should be known to the programming
community. I have managed to collect materials from many sources and I have understood the
real stuff of CORDIC.

59.1 Birth of CORDIC
 CORDIC was introduced by Volder in 1959 to calculate trigonometric values like sine,
cosine, etc. In 1971, Walther extended this algorithm to calculate hyperbolic, logarithmic and
other functions.

59.2 Advantages
 This algorithm uses only minimal hardware (adder and shift) for computation of all
trigonometric and other function values. It consumes fewer resources than any other techniques
and so the performance is high. Thus, almost all scientific calculators use the CORDIC algorithm
in their calculations.

59.3 Principle
 CORDIC works by rotating the coordinate system through constant angles until the angle
is reduced to zero. So with this principle we are changing the given angle each time to reduce to
zero. Here we are using addition, subtraction and shift to calculate the function values.
 Now let us see, how we can calculate sine and cosine values using CORDIC. Consider a
vector C with coordinate (X, Y) that is to be rotated through an angle σ. The new coordinate
(X′,Y′) after rotation is

C′ =

X′
Y′

=

X cos(σ) � Y sin(σ)
Y cos(σ) � X sin(σ)

59

A to Z of C

590

This equation can be represented in tangent form as

 X/cos(σ) = X � Y x tan(σ)
 Y/cos(σ) = Y � X x tan(σ)

The angle is broken into smaller and smaller pieces,

such that the tangent of the angle is always power of 2. The
pre-calculated angles are also added to the total angle and
thus the above equation can be written as

 X(i+1) = t(i) x (X(i) � Y/2i)
 Y(i+1) = t(i) x (Y(i) � X/2i)
 where t(i) = cos(arctan(1/2i))
 i varies from 0 to n
 According to the above iterative equation t(i) will
converge to a �constant� after first few iterations (i.e., when i get varies). So it is better to pre-
calculate this �constant� for a greater value of n as:

 T = cos(arctan(1/20)) x cos(arctan(1/21)) x ���.. x cos(arctan(1/2n))

 Calculated value of T will always be 0.60725293500888. We can use any precision
for T. But the accuracy of the calculation of sine and cosine depends on the precision we use and
so it is recommended to use at least 6 precision in your calculation.
 While we program, the value of the angle arctan(1/2i) can be pre-calculated and stored in
an array. This value can be used in the iterations and it avoids the calculation at the iterative time.

59.4 Algorithm
The steps for CORDIC algorithm are:

1. Get the angle and store it in Angle. Store the pre-calculated arctan values in

an array
2. Assign X = 0.607252935 (i.e., X=T), Y=0
3. Find X′ and Y′
4. If sign of Angle is positive then

X = X - Y′
Y = Y + X′

 else (If sign of Angle is negative)
 X = X + Y′
 Y = Y - X′

5. Repeat steps (3) and (4) till the Angle approaches 0
6. Print �Value of cos = � X
7. Print �Value of sin = � Y
8. Exit

C′

C
σ

 A to Z of C

591

59.5 Program
 Following is the program for calculating sine and cosine value for a given angle. In this
program the variable Angle holds the supplied angle (for which we have to find the cosine and
sine values). Arctans[i] holds the precalculated angle of arctan�s. Then in each iteration the
value of Arctans[i] is subtracted from or added to Angle according to the sign of the Angle
value. We can finish the iteration when Angle becomes 0 or to a nearer value (say, 0.00001). The
value of X and Y will also incremented or decremented according to Angle value.
 After the completion of this program, cosine value will be stored in X and sine value will
be stored in Y for a given Angle.

#define T (0.60725293500888)
#define SIZE (50)
#define ZERO (0.00000001) /* approximation for zero */

#include <math.h>
int main(void)
{
 int i = 0;
 double X = T, Y = 0.0, Angle;
 double dx, dy;
 double Arctans[SIZE] =
 {
 45.0000000000000, 26.5650511770780, 14.0362434679265,
 7.1250163489018, 3.5763343749974, 1.7899106082461,
 0.8951737102111, 0.4476141708606, 0.2238105003685,
 0.1119056770662, 0.0559528918938, 0.0279764526170,
 0.0139882271423, 0.0069941136754, 0.0034970568507,
 0.0017485284270, 0.0008742642137, 0.0004371321069,
 0.0002185660534, 0.0001092830267, 0.0000546415134,
 0.0000273207567, 0.0000136603783, 0.0000068301892,
 0.0000034150946, 0.0000017075473, 0.0000008537736,
 0.0000004268868, 0.0000002134434, 0.0000001067217,
 0.0000000533609, 0.0000000266804, 0.0000000133402,
 0.0000000066701, 0.0000000033351, 0.0000000016675,
 0.0000000008338, 0.0000000004169, 0.0000000002084,
 0.0000000001042, 0.0000000000521, 0.0000000000261,
 0.0000000000130, 0.0000000000065, 0.0000000000033,
 0.0000000000016, 0.0000000000008, 0.0000000000004,
 0.0000000000002, 0.0000000000001
 };
 printf("Enter the Angle : ");
 scanf("%lf", &Angle);
 printf("I\tX\t\tY\t\tAngle\t\tPreCal arctan()\n");

A to Z of C

592

 while(fabs(Angle) >= ZERO && i < SIZE)
 {

printf("\n%2d %3.11lf %+3.11lf %+3.11lf %3.11lf",
 i, X, Y, Angle, Arctans[i]);

 dx = X / pow(2, i);
 dy = Y / pow(2, i);
 if(Angle >= 0.0)
 {
 Angle -= Arctans[i];
 X -= dy;
 Y += dx;
 }
 else
 {
 Angle += Arctans[i];
 X += dy;
 Y -= dx;
 }
 ++i;
 }
 return(0);
} /*--main()------*/

 Here is the output of our program for Angle = 3.

I X Y Angle PreCal arctan()

 0 0.60725293501 +0.00000000000 +3.00000000000 45.00000000000
 1 0.60725293501 +0.60725293501 -42.00000000000 26.56505117708
 2 0.91087940251 +0.30362646750 -15.43494882292 14.03624346793
 3 0.98678601939 +0.07590661688 -1.39870535500 7.12501634890
 4 0.99627434650 -0.04744163555 +5.72631099391 3.57633437500
 5 0.99923944872 +0.01482551111 +2.14997661891 1.78991060825
 6 0.99877615150 +0.04605174388 +0.36006601066 0.89517371021
 7 0.99805659300 +0.06165762125 -0.53510769955 0.44761417086
 8 0.99853829317 +0.05386030412 -0.08749352869 0.22381050037
 9 0.99874868498 +0.04995976391 +0.13631697168 0.11190567707
10 0.99865110732 +0.05191044493 +0.02441129461 0.05595289189
11 0.99860041352 +0.05288569016 -0.03154159728 0.02797645262
12 0.99862623661 +0.05239809230 -0.00356514466 0.01398822714
13 0.99863902912 +0.05215428706 +0.01042308248 0.00699411368
14 0.99863266263 +0.05227619124 +0.00342896880 0.00349705685
15 0.99862947194 +0.05233714294 -0.00006808805 0.00174852843
16 0.99863106914 +0.05230666719 +0.00168044038 0.00087426421
17 0.99863027101 +0.05232190509 +0.00080617617 0.00043713211
18 0.99862987182 +0.05232952403 +0.00036904406 0.00021856605
19 0.99862967220 +0.05233333351 +0.00015047801 0.00010928303

 A to Z of C

593

20 0.99862957238 +0.05233523824 +0.00004119498 0.00005464151
21 0.99862952247 +0.05233619061 -0.00001344653 0.00002732076
22 0.99862954743 +0.05233571442 +0.00001387422 0.00001366038
23 0.99862953495 +0.05233595252 +0.00000021385 0.00000683019
24 0.99862952871 +0.05233607156 -0.00000661634 0.00000341509
25 0.99862953183 +0.05233601204 -0.00000320125 0.00000170755
26 0.99862953339 +0.05233598228 -0.00000149370 0.00000085377
27 0.99862953417 +0.05233596740 -0.00000063993 0.00000042689
28 0.99862953456 +0.05233595996 -0.00000021304 0.00000021344

The value of cos(3) is stored in X and sin(3) is stored in Y. Thus, according to the
precision we use for T, the accuracy of the cosine and sine values can be increased or decreased.

