

“Show respect for all people.”

Mouse Programming

As everyone knows, mouse is one of the inputting devices. In this chapter, I explain
interrupts for mouse programming and a few concepts regarding mouse programming. In the
graphics programming, we can see more examples. To work with mouse, we must have mouse
driver file mouse.com.

25.1 Mouse Interrupts
 int 33h is the mouse interrupt. It has so many functions. Certain functions will be
available only to certain drivers. A complete interrupt specification is available on Ralf Brown’s
Interrupt List.

25.2 Useful Mouse functions
25.2.1 Mouselib.h

#ifndef __MOUSELIB_H

#define LFTCLICK (1)

int InitMouse(void);
void ShowMousePtr(void);
void MoveMousePtr(int x, int y);
void RestrictMousePtr(int x1, int y1, int x2, int y2);
void HideMousePtr(void);
void GetMousePos(int *mbutton, int *x, int *y);

#endif

25.2.2 Mouselib.c
#include "mouselib.h"

#pragma inline

/*---
 InitMouse - Initializes Mouse.
 Returns 0 for success. */

25

 A to Z of C

111

int InitMouse(void)
{
 asm {
 MOV AX, 0;
 INT 33h;
 }
 return;
} /*--InitMouse()---*/

/*---
 ShowMousePtr - Shows Mouse Pointer. */

void ShowMousePtr(void)
{
 asm {
 MOV AX, 1h;
 INT 33h;
 }
} /*--ShowMousePtr()----*/

/*---
 HideMousePtr - Hide Mouse Pointer. */

void HideMousePtr(void)
{
 asm {
 MOV AX, 2h;
 INT 33h;
 }
} /*--HideMousePtr()-----*/

/*---
 MoveMousePtr - Move Mouse Pointer
 to (x, y). */

void MoveMousePtr(int x, int y)
{
 asm {
 MOV AX, 4h;
 MOV CX, x;
 MOV DX, y;
 INT 33h;
 }
} /*--MoveMousePtr()-----*/

A to Z of C

112

/*---
 RestrictMousePtr - Restrict Mouse Pointer
 to the specified coordinates */

void RestrictMousePtr(int x1, int y1, int x2, int y2)
{
 asm {
 MOV AX, 7h;
 MOV CX, x1;
 MOV DX, x2;
 INT 33h;
 MOV AX, 8h;
 MOV CX, y1;
 MOV DX, y2;
 INT 33h;
 }
} /*--RestrictMousePtr()--------*/

/*---
 GetMousePos - Gets Mouse position &
 mouse button value. */

void GetMousePos(int *mbutton, int *mx, int *my)
{
 asm {
 MOV AX, 3h;
 INT 33h;

 MOV AX, BX;
 MOV BX, mbutton;
 MOV WORD PTR [BX], AX;

 MOV BX, mx;
 MOV WORD PTR [BX], CX;

 MOV BX, my;
 MOV WORD PTR [BX], DX;
 }
} /*--GetMousePos()------*/

25.2.3 Mouselib.lib
 When you compile the above Mouselib.c file to a library file for Small memory model,
you will get Mouselib.lib file. You can use the library – Mouselib.lib in your projects..

 A to Z of C

113

25.3 Mouse Function 0Ch
 Function 0Ch that is available with int 33h is very much useful. And almost all game
programmers and graphics programmers use it. The beauty of this function is that it allows us to
install our own handler, so that whenever the int 33h is generated, our own handler will be
automatically called. In other words, instead of setvect(), we have to use function 0Ch for
installing our own handler.
 Installing our own mouse handler to get mouse input is referred as Event Mode. Game
programmers prefer Event Mode and they use circular queue to store the events as inputs. The
following codes by Alexander J. Russell illustrate the concept.
 First of all, we have to initiate the normal int 33h mouse driver to install a “stub” program
that calls our real mouse handler. The “stub” is written in ASM.

;***
;* *
;* Assembly language hook for CMOUSE library event handler *
;* *
;* Assemble with /Ml switch *
;* *
;***
; real code for real men
; adjust for proper memory model
.MODEL SMALL,C

.CODE
 PUBLIC mouse_event_func,mouse_int

mouse_event_func DD ?

mouse_int PROC FAR
 PUSHF
 CALL CS:[mouse_event_func]
 RET
mouse_int ENDP

END
;--

 The above assembler function mouse_int() is called by the int33h driver.
mouse_int() in turn calls whatever function mouse_event_func() points to.
mouse_event_func() is a pointer to a function and it is not itself a function.

A to Z of C

114

Following is the C code to use the mouse.

#define ESC 27

short mouse_x, mouse_y;
short mouse_present;
short mouse_hidden=0;
short button_stat=0;
unsigned short flags;

extern void far *far mouse_event_func;
void mouse_int(void);

typedef struct
 {
 unsigned int flags, x, y, button_flag;
 } mouse_info_t;

#define MAX_MOUSE_EVENTS 10
#define MOUSE_MOVE 1
#define MOUSE_L_DN 2
#define MOUSE_L_UP 4
#define MOUSE_R_DN 8
#define MOUSE_R_UP 16

#define EVENT_MASK 31 /* the logical OR of the 5 above vars */

mouse_info_t mouse_info[MAX_MOUSE_EVENTS]; /* Circular Queue */
int head=0;
int tail=0;

/*--
 mouse_handler - the low level interrupt
 handler calls this */

void far interrupt mouse_handler(void)
{
 /* save info returned by mouse device driver */
 asm {
 mov flags, ax
 mov mouse_x, cx
 mov mouse_y, dx
 mov button_stat, bx
 }

 // place the mouse information in a circular queue

 A to Z of C

115

 mouse_info[tail].x = mouse_x;
 mouse_info[tail].y = mouse_y;
 mouse_info[tail].button_flag = button_stat;
 mouse_info[tail].flags = flags;

 tail++;
 if (tail == MAX_MOUSE_EVENTS)
 tail=0;
 if (tail == head)
 {
 head++;
 if (head == MAX_MOUSE_EVENTS)
 head=0;
 }

} /*--interrupt mouse_handler()--------*/

/*--
 init_mouse - is there a mouse, install int
 handlers */
short init_mouse(void)
{
 unsigned short c_seg, c_off;

 asm{
 xor ax, ax
 int 033h

 /* note BX holds number of buttons, but we don't care */
 mov mouse_present, ax
 }

 if (mouse_present)
 {
 /* install our own handler */
 mouse_event_func = mouse_handler; /* global func pointer */

 /* install mouse_int as mouse handler, which will call
 mouse_handler */

 c_seg = FP_SEG(mouse_int);
 c_off = FP_OFF(mouse_int);
 asm{
 mov ax, c_seg
 mov es, ax
 mov dx, c_off
 mov ax, 0ch

A to Z of C

116

 mov cx, EVENT_MASK
 int 033h
 }

 /* set mouse x, y limits */
 asm{
 mov ax, 7
 mov cx, 0
 mov dx, 359
 int 033h

 mov ax, 8
 mov cx, 0
 mov dx, 239
 int 033h

 /* set initial mouse_x, mouse_y */
 mov ax, 3
 int 033h

 mov mouse_x, cx
 mov mouse_y, dx
 }
 }
 return(mouse_present);
} /*--init_mouse()---------*/

/*--
 deinit_mouse - deinstall our mouse handler
 */
void deinit_mouse(void)
{
 if (mouse_present)
 {
 /* deinstall our mouse handler by making int 33 never call it */
 asm{
 mov ax, 0ch
 xor cx, cx /* mask == 0, handler never called */
 int 033h

 /* reset mouse driver */
 xor ax, ax
 int 033h
 }
 }
} /*--deinit_mouse()--------*/

 A to Z of C

117

Assembler function mouse_int() calls mouse_event_func() whenever the
mouse is moved, or a button is pressed or released. mouse_event_func() points to
mouse_handler() which queues up the mouse events.

25.4 Request Mode or Event Mode?
 Request Mode is the one in which we call mouse interrupts to get mouse information or
inputs. Whereas event mode is the one in which we install our own mouse handler to get mouse
information. Request mode can be used for ordinary programming. In request mode, there is a
chance for missing few inputs—mouse move or mouse click. But in Event mode, we can get all
inputs. So professional programmers use Event mode.

Exercise

1. Write all mouse functions using interrupt programming. Then find out each
function’s use. (Hint: Get into graphics mode for better results)

Suggested Projects

1. Write a mouse driver program.
2. Write mouse functions that doesn’t use interrupts or mouse.com. (Hint: You have to

use ports)

