

“Think before you speak.”

Interrupt Programming

 Interrupt is the one which temporarily suspends the execution of the current program and
executes a specific subroutine called interrupt routine and then resumes the execution of actual
program. Many people think that the interrupt instruction 'INT' is one of the "basic" instructions
in assembly language. But it is not so. The 'INT' instruction just calls or invokes a specific routine
i.e., interrupt routine.

19.1 Logical outline of interrupt routine
 The following code shows the logical outline of an interrupt routine. (Please understand
that it is only a prototype)

int10h(REGISTER AX, REGISTER BX,)
{
 switch(AH) /* AH holds function number */
 {
 case 0x0:
 switch(AL) /* AL holds sub function number */
 {
 case 0x0:
 MOV

 INC
 break;
 case 0x1:
 :
 break;
 }
 break;
 case 0x1:
 if(BX == 0)
 {
 MOV
 :
 }
 break;
 case 0x2:
 :
 break;
}

19

 A to Z of C

83

 Here, you see that the behavior of the interrupt routine is determined by the argument that
passes through (Some book authors use the term input values instead of argument. But
professional programmers use the term argument). The value passed through the register AH is
referred as function value. In special cases, value is also passed through AL register to the sub-
function. Sometimes we would also pass values through other registers.
 Some interrupt routines don’t take any argument, which means we don't need to pass
value through registers. For example, the interrupt for Print Screen int 5h doesn't take any
argument. The prototype of int 5h hence looks like:

 int5h(void)
 {
 MOV ...
 :
 :
 }

 Usually interrupt numbers, function numbers and sub-function numbers are represented
in hexadecimal rather that in decimal.

19.2 Interrupt Classification
 Each and every motherboard must have a chip containing software, which is known as
BIOS or ROM BIOS. Basic Input/Output system (BIOS) is a collection of programs burned (or
embedded) in an EPROM (Erasable Programmable Read Only Memory) or EEPROM
(Electrically Erasable ROM). We can call these programs by what is known as interrupts. By the
way you should know that BIOS programs are not much compatible, because they are written
typically for the hardware and they manage the hardware. (Different machines may use different
hardware). Usually most of the BIOS functions are compatible.
 Operating System is nothing but program that operates computer. It is actually an
extension of BIOS. Thus Disk Operating System (DOS) functions and BIOS functions
collectively interact with the hardware. Besides interacting with hardware, DOS programs preside
more useful functions such as file maintenance (create file, delete file, rename file, etc). These
functions can be called by interrupts. Experts find that DOS programs are good for 'DISK' related
functions, than 'Input / Output' related functions. Yes, DOS also has got few 'Input / Output'
related functions. But these 'Input / Output' related functions are not much used by programmers.
They prefer BIOS functions for 'Input / Output' related functions. There is a drawback with DOS
functions; it is not re-entrant (where as BIOS functions are re-entrant). If a routine can be called
again before it is finished, it is said to be re-entrant. TSR programmers very often get suffered by
DOS's re-entrancy problem.

A to Z of C

84

19.3 Programming with interrupts
 We have seen that we can call DOS functions or BIOS functions with what is known as
interrupts. Turbo C provides various ways to send arguments and to generate interrupts. Let’s
write a simple function GetVideoMode() to get the current video mode with various styles.
 To get the current video mode, we have to generate int 10h and we should pass 0Fh in
AH register as an argument. After generating interrupts, current video mode is stored in AL
register.

19.3.1 Inline Assembly Style
typedef char BYTE;
BYTE GetVideoMode(void)
{
 asm {
 mov ah, 0Fh;
 int 10h;
 }
 /* AL holds current video mode and is returned */
} /*--GetVideoMode()-------*/

19.3.2 Pure Assembly Style
 We can also write a pure assembly file (getvid.asm) and assemble the file with TASM as

 C:\WAR>TASM -mx getvid

 Now we will get getvid.obj. We can link this obj file with the main program.

; File name: Getvid.asm
.MODEL small, C
.CODE
 PUBLIC GetVideoMode
GetVideoMode PROC NEAR
 MOV AH, 0Fh
 INT 10h ; AL register holds current video mode
 XOR AH, AH ; Set AH register to 0
 ; Now, AX holds value of AL
 RET ; value in AX get returned
GetVideoMode ENDP
END

19.3.3 geninterrupt() style
typedef char BYTE;
BYTE GetVideoMode(void)
{
 _AH = 0x0F;

 A to Z of C

85

 geninterrupt(0x10);
 return(_AL);
} /*--GetVideoMode()-------*/

19.3.4 int86() style
BYTE GetVideoMode(void)
{
 union REGS inregs, outregs;
 inregs.h.ah = 0x0F;
 int86(0x10, &inregs, &outregs);
 return(outregs.h.al);
} /*--GetVideoMode()-------*/

 The function related to int86() are int86x(), intdos() & intdosx().
And those functions return the value of AX after completion of the interrupt. If an error occurs,
carry flag is set to 1 and _doserrno is also set to error code.

19.3.5 intr() style
BYTE GetVideoMode(void)
{
 struct REGPACK regs;
 regs.r_ax = 0x0F00;
 intr(0x10, ®s);
 return((BYTE)regs.r_ax);
} /*--GetVideoMode()-------*/

 Here you have to note that intr() functions doesn't return anything, there is no way to
represent AL or AH register separately.

19.3.6 Benchmarking
 We can find that the inline assembly style and pure assembly style are faster than any
other above methods. Big software companies use "Pure Assembly Style". They create library file
with assembly language and link them wherever necessary. Inline assembly is my choice, because
it provides more readability, C style usage and flexibility. For example in C, we can directly enter
octal or hexadecimal or decimal number as

int a = \101 ; /* Octal */
int b = \x65 ; /* Hexa */
int c = 65 ; /* decimal */

 But we cannot directly enter binary values in C (But it is possible in Assembly!). One
solution for this is to use strtol() as:

int a;
char str[] = "0000010"; /* binary */

A to Z of C

86

char *endptr;
/* radix should be 2 for binary in strol... */
a = strtol(str, &endptr, 2);

Fortunately inline style provides more flexibility and an easy way for entering binary
values:

asm MOV AX, 00000010b;
a = _AX;

(or) asm {
 MOV AX, 00000010b ;
 MOV a, AX ;
 }

 The suffix 'b' tells that it is a binary number.
 That's why I prefer the flexible inline style. But if you are a beginner and if you don't
know much of assembly, I suggest you to use int86() style as it provides good error handling
mechanism. You can even use other styles, if you are comfortable with them!

19.4 Myth & Mistakes
Q: "Use of standard library functions increase the size of the EXE file. But this interrupt function
doesn't increase the size of the EXE file". Is this statement true?

A: No. This statement has no sense at all. This myth is introduced in Indian Programming
World by few book authors. TC’s library functions also use interrupts and it was also written by
“Programmers”. The only difference you can find between interrupt programming and using
compiler’s library is flexibility i.e., our own functions will be more convenient as it is written by
us.

Q: Can I use standard library’s gotoxy() ?

A: The standard library according to ANSI standard doesn’t have gotoxy(). gotoxy()
is provided by Turbo C and you can use it.

Exercises

1. Write a program that find out the life of battery found on your motherboard.

Suggested Projects

1. Write diagnostic software that finds the status of your peripherals and motherboard.

