

“Do to others what you want them to do to you.”

Mating Assembly with C

Nothing can beat the efficiency of Assembly language. A good optimizing C compiler
will convert C file to a better assembly code. But a good human Assembly programmer can write
much more tight and efficient code. If you are such an efficient-superb Assembly programmer,
fortunately there is a way to link those assembly codes with C and so you can improve your
program.

16.1 Inline Assembly
 You can write Assembly code inside a C file. That is called as Inline Assembly. In
TC++3.0 Inline assembly is being assembled by BASM (Built-in inline Assembler). You don't
need TASM. If you use #pragma inline, inline codes get assembled with TASM. If you use
x386 instructions in inline assembly, BASM cannot assemble those codes. In such a case you
must use TASM and for that you should use #pragma inline.

16.1.1 Example 1
 Let’s see an example to print message "A to Z of C" with inline assembly.

int main(void)
{
 char *msg = "A to Z of C \r\n$"; /* $ is the null terminator
 in assembly */
 asm {
 MOV AH, 9;
 MOV DX, msg;
 INT 21H;
 }
 return(0);
} /*--main()-----*/

Here we have used interrupts to print message. We can see more about interrupt
programming later.

16.1.2 Example 2
 We can also use inline assembly in functions. Anything that is present in AX register will
be returned.

16

A to Z of C

60

 Let’s see a program to add two integers.

/* main program */
int main(void)
{
 printf("5+100 = %Ld\n", Add(5, 100));
 return(0);
} /*--main()-------*/

 Now we have to write the function Add() with inline assembly.

int Add(int x, int y)
{
 asm {
 MOV AX, x;
 MOV BX, y
 ADD AX, BX;
 }
 /* return(_AX); can be used to shut off warning */
} /*--Add()-------*/

So the result in AX gets returned automatically. But here you will get a warning. If you
are allergic to warning, you can shut it off by adding return(_AX); in the last line.
 Let’s see another efficient version of Add().

int Add (int _AX, int _BX)
{
 asm ADD AX, BX;
} /*--Add()-------*/

 If you want to return long values, you can use

long Add(int x, int y)
{
 asm{
 MOV DX, 0;
 MOV DX, x;
 ADD AX, y; /* low byte in AX */
 ADC DX, 0; /* high byte in DX */
 }
} /*--Add()-------*/

 The result in AX(upper word), DX(lower word) gets returned as long. Here you must not
use return(_AX); to shut off warning!

 A to Z of C

61

16.1.3 Usual Errors
 Most of the time you don't need TASM because the built-in BASM is sufficient enough.
In case if you use x386 instructions, you have to invoke TASM with #pragma inline. You
will get error when you don't have TASM assembler. One solution for this error is to buy TASM
from Borland for about $130 (TASM is not yet available for free). Another solution is to create a
separate and a pure (i.e., without C) assembly file and assemble with the free assembler like
NASM, MASM, etc. Then you have to link that OBJ file with C (This technique of calling
Assembly routine from C is discussed in the next section).

16.2 Calling Assembly routines from C
 Believe it or not, all the standard library functions are written in Assembly (not in C!!) by
Borland for efficiency. Then you might be asking me how is it possible to call such a routine
from C. Yes, it is possible. The idea is you can link any portable OBJ and LIB files. Thus the
standard library functions that are available as LIB and OBJ (browse to your TC folder and
check!!) are being linked by the linker with C files in 'linking phase'.

16.2.1 C’s calling convention
 Before getting deeper on this subject it is necessary to know about the convention of C
language. In high level language whenever a function is being called, the parameters are pushed
into the stack so that the parameters be passed to that routine. For example, if we call a function
Add(7,70), the parameters 7 and 70 are pushed into the stack. The order in which the
parameters are pushed varies from language to language. In C language the parameters are
pushed in the reverse order (i.e., 70 first, then 7). Also C passes the parameters by value rather
than by reference, unless we have used pointers.

Calling convention of high level language
 Parameter passing Destination

C by value Reverse Order

Pascal by value In the given order

FORTRAN by reference In the given order

 We can also set our TC IDE to use Pascal calling function by OPTION > COMPILER >
PASCAL. in the command line TCC -p. When you use such Pascal calling conventions, you
must explicitly declare main() with cdecl as

 int cdecl main(void)

A to Z of C

62

Note
 As the Pascal calling convention ensures ‘In Order’ pushing, it produces tight & efficient code.
However it is a good practice to stick onto the C’s standard calling convention.

16.2.2 C's naming convention
 When you declare an identifier, Turbo C automatically joins an underscore in front of the
identifier before saving that identifier in that object module. However, Turbo C treats Pascal type
identifiers (those modules with pascal keyword) differently. i.e., they use uppercase and are not
prefixed with underscore. Turbo C automatically joins an underscore in front of the function
name too.

16.2.3 Example 1
With the above enough theory let’s see a real example of how to link the assembly

routines with C. Please note that in assembly the comment line starts with semicolon (;).

; File name: Hello1.asm
.MODEL small
.DATA
 msg DB "Hello!$"
.CODE
 PUBLIC _PrintHello ; Function Name
_PrintHello PROC NEAR
 MOV AH, 9
 MOV DX, OFFSET msg
 INT 21h
 RET
_PrintHello ENDP
END

 Here you might have noticed that we have prefixed underscore (_) with the name of the
function. That is because of the C's naming convention as discussed in the previous section. You
have to note that we are mating two different language i.e. C and Assembly. As we discussed,
when we compile a C file to OBJ file all the function names and identifiers are automatically
prefixed with underscore (_) by the compiler. So if we don't put up an underscore (_) here in
Assembly, we cannot link these files. If you find it odd to use an underscore (_) in front of
function name, then there is another way of declaring function i.e. to use 'C' keywords with
assembly directive as:

;File name: Hello2.asm
.MODEL small, C ;'C' used to set the assembly to C
 ; calling & naming convention
.DATA
 msg DB "Hello!$"
.CODE

 A to Z of C

63

 PUBLIC PrintHello
PrintHello PROC NEAR
 MOV AH, 9
 MOV DX, OFFSET msg
 INT 21h
 RET
PrintHello ENDP
END

 The 'C' keyword sets the assembler to use C calling convention and it automatically
prefixes underscore(_) with all procedures that are declared as EXTERN or PUBLIC. Here we
find that Hello2.asm "looks better" than Hello1.asm! So let’s use Hello2.asm.
 The next step is to assemble the Hello2.asm to OBJ file. When you assemble, you must
assemble it with the case sensitive switch on. The assembler makes all PUBLIC labels into capital
letters by default, unless we use case sensitive switch -mx. Case sensitive is important, because C
language is case sensitive and we need "PrintHello" to be case sensitive. We can assemble the
Hello2.asm as:

C:\WAR>TASM -mx Hello2.asm

Now you will get Hello2.OBJ which contains
PrintfHello procedure.

Note
If you don’t have TASM, you can use the available assemblers such as MASM, NASM etc. For the details
regarding the switches, see your assembler’s documentation.

 Next we have to write a C program that uses PrintHello() function.

/* Chkasm1.c */
extern PrintHello(void); /* PrintHello is written in assembly
 available in Hello2.asm */
int main(void)
{
 PrintHello();
 return (0);
} /*--main()-----*/

 Now we have to compile chkasm1.c and link Hello2.obj in the same time as:

C:\WAR> tcc chkasm1.c Hello2.obj

Now you will get chkasm1.exe that you can run

it under DOS.

Note
You can even assemble the
Hello2.asm from IDE by choosing
≡>Turbo Assembler

Note
To compile chkasm1.c and link
Hello2.obj, you can also use project
file instead of command line compiler
tcc.

A to Z of C

64

16.2.4 Example 2
; File name: Addnum.asm
.MODEL small, C
.CODE
 PUBLIC Addnum
Addnum PROC NEAR USES BX, x: WORD, y: WORD
 MOV AX, x
 ADD AX, y
 RET
Addnum ENDP
END

Assemble as : c:\WAR>TASM -mx Addnum

/* Chkasm2.c */
extern Addnum(int x, int y); /* Addnum is written in

Addnum.asm */
int main(void)
{
 printf("5+100 = %d \n", Addnum(5, 100));
 return(0);
} /*--main()---*/

Compile and link as : c:\WAR>tcc chkasm2.c addnum.obj

16.3 Creating library file out of assembly language module
Creating library file out of assembly language module is the easiest one. We can add any

number of modules with the library file. For that you can use TLIB. For example to create a
library file newlib.lib which contains our PrintHello() and Add() functions we can use,

C:\WAR>TLIB NEWLIB.LIB + Hello2.OBJ

 Now the newlib.lib file contains only the PrintHello() function.

C:\WAR>TLIB NEWLIB.LIB + addnum.obj

 Now the newlib.lib file contains both PrintHello() and Addnum()
function.

If you feel that newlib.lib should not contain PrintHello() function, you can even
remove the function with the help of '-' switch as:

C:\WAR>TLIB NEWLIB.LIB - Hello2.obj

For more information on the switch of TLIB, see the Turbo C documentation.

