

“Everyone who asks will receive.”

Traits of Turbo C

In the First Chapter itself I told you that Turbo C++3.0 is the IDE that is used throughout
this book. If you’ve got Turbo C 2.0 or latter version of Turbo C, please get version 3.0. Why I
prefer Version 3.0 is, it is being helpful to explain DOS programming than any other versions.

15.1 Features of TC++3.0

• Syntax highlighting
• Supports C++’s single line comment (//) even for C codes
• More options
• Can execute inline assembly without any overhead.

15.2 Configure your TC++3.0
 If you change the default configuration (color, tab etc) of TC++3.0, it is enough to delete
the file TCCONFIG.TC that is found on the TC directory to get back default configuration.

• Set the default extension to C by Options > Editor > Extension > C
• Set tab size to 8 by Options > Editor > Tab > 8

15.3 IDE basics
 IDE is nothing but Integrated
Development Environment. IDE has got so many
components. The most important components
among them are Editor, Compiler, Assembler &
linker.
 First of all we should know the difference
between Editor, Compiler, Assembler & linker.
Editor is the one in which we create, read & edit
our texts. Compiler is the one, which converts C
files (.c) to Assembly (.asm) files. Compiler is
very often treated as language converter. Assembler is the one, which converts assembly (.asm)
files into object (.obj) files or (.lib) files. Linker is the one that links object (.obj) files and library
(.lib) files and thus creates an executable file (.exe or .com).

15

Tool Input Output

Compiler .c .asm

Assembler .asm .obj or .lib

Linker .obj & .lib .exe or .com

A to Z of C

48

 Compiler, Assembler & Linker are usually command line executable files, which requires
filename(s) and other information as parameters. What IDE does is, it saves our time by invoking
the proper utilities with proper parameters within the Editor.

15.4 Useful Utilities
 You have many useful utilities to use with TC++3.0. These useful utilities are rarely
known in India. Please try to use them for better programming! I will just introduce the utilities.
For more explanations about those utilities, see the documentation (found on TC directory).

15.4.1 BASM
 BASM is Built-in inline Assembler. It is used to assemble the inline assembly to the C
file.

15.4.2 TASM
 BASM is not much efficient. It can handle only x286 instructions. TASM (Turbo
Assembler) can handle x386 instructions. x386 instructions are efficient compared to x286
instructions. So real programmers use TASM than BASM.
 In the beginning of the program you have to add the following line to invoke TASM.

 #pragma inline

 Otherwise the default BASM will be called.

Note
 Even in TASM, the default instruction sets are x286. To call x386 instruction, you
have to add .386. We will see this later!

15.4.3 TLINK
 TLINK is used to link object files and library files and produces the executable file.

15.4.4 TLIB
 Turbo library or TLIB is useful to manage, create library files.

15.4.5 MAKE
 MAKE file seems to be like a batch file. Real programmers very often use this useful
utility.

15.4.6 TCC
 TCC is a command line compiler. It is an integrated compiler. Using this you can create
assembly files, object files, and you can also create executable files directly.

 A to Z of C

49

15.5 main()
 In contradict to ANSI C, Turbo C supports three arguments: argc, argv & env. argc
holds number of arguments passed in command line. argv is the array of pointer to the string in
command line. Under 3.X versions of DOS, argv[0] points to the full path name of the program
(e.g., C:\WAR\CHKMAIN.EXE). Under versions of DOS before 3.0, argv[0] points to null string.
argv[1] points to first string typed on command line after the program name. argv[argc]
contains NULL. env is an array of pointers to the string of environment variables.
 Let’s see an example:

/* chkmain.c */
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[], char *env[])
{
 int i;
 printf("argc = %d \n", argc);
 for(i=0; i<=argc; ++i)
 printf("argv["%d"] = %s \n", i, argc[i]);
 for(i=0; env[i] != NULL; ++i)
 printf("env["%d"] = %s \n", i, env[i]);
 return(0);
}

Input & Output
C:\WAR>CHKMAIN argument1 “second argument” 3 “last argument”

 See argv[2] and arg[4]. In order to embed blanks we have put it in double quotes.
Turbo C sends all the three arguments (argc, argv, env) to its programs. But using the third
argument env is not a standard way. For standard programming use environ.

15.5.1 int main() or void main() ?

 Turbo C accepts both int and void main() and Turbo C programmers use both int
and void main() in their programs. But in my opinion, void main() is not a standard
usage. The reason is, whenever a program gets executed it returns an integer to the operating
system. If it returns '0' means, the program is executed successfully. Otherwise it means the
program has been terminated with error.
 Using a sample program, I have found that void main() returns 20 even after
successful completion of program (which means it returns wrong status to the operating system!).

/* intmain0.c */
int main(void)
{
 printf("int main returns 0 \n");

A to Z of C

50

 return(0);
} /*--main()-----*/

/* intmain5.c */
int main(void)
{
 printf("int main returns 5 \n");
 return(5);
} /*--main()------*/

/* voidmain.c */
void main(void)
{
 printf("void main returns? \n");
} /*--main()----*/

@ECHO OFF
REM *** Batch file to check return code (Testmain.bat) ***
 CLS
 intmain0.exe
 ECHO %errorlevel%
 intmain5.exe
 ECHO %errorlevel%
 voidmain.exe
 ECHO %errorlevel%
REM *** end ***
@ECHO ON

 After compiling all the C files to exe files, test the return values with TESTMAIN.BAT.
It shows the error value or status.
 Thus we have found that int main() is the appropriate usage.

Note
However void main() will be useful in certain circumstances like programming for embedded systems &
real time operating system, because there is no place to return the status value. We will see those things
later!

 We can also get status of main() by using the menu option COMPILE>Information…
from IDE without using BATCH file.

15.6 Preprocessor
 Preprocessor performs macro substitutions, conditional compilation and inclusion of
named files. All these are done with controls like: #define, #if, #ifdef, #ifndef,

Note
As I am working on Windows NT, I used
%errrorlevel% in a batch file. In other platforms, it
may not work. You may have to try different
techniques to display the “errorlevel”.

 A to Z of C

51

#elif, #else, #line, #error, #pragma, #include. We’ve got several predefined
identifiers and macros that expand to produce special information (__LINE__, __FILE__,
__DATE__, __TINY__, etc)

15.7 Header file
 The costly mistake very often performed by Indian Programmers is to write all functions
in the header (.h) file and to include it in main. Actually header files are those that contain
#defines and function prototype declarations.
 The following demonstration explains why writing functions in header and including it in
the main program is wrong.

/* Badhead.h */
static void PrintHello(void)
{
 printf("Hello! \n");
} /*--PrintHello()-----*/

/* chkhead.c */
#include "badhead.h"
int main(void)
{
 PrintHello();
 return(0);
} /*--main()-----*/

Input & Output
C:>CHKHEAD
Hello!

When we include the Badhead.h file in chkhead.c, file gets expanded. And so it prints

the message "Hello!", which is wrong according to the definition of static functions. K&R page-
83 says, "If a function is declared static, however, its name is invisible outside of the file in which
it is declared".
 Now let’s see the right declaration of a header file.

/* Head.h */
#ifndef __HEAD_H /* OR if !define(__HEAD_H) */
#define TRUE (1)
#define FALSE (0)
typedef int BOOLEAN;

void PrintHello1(void);
void PrintHello2(void);

#endif

A to Z of C

52

 If head.h file is included in our program, the compile time variable __HEAD_H will be
created. We can use it as a flag to check whether the file is already included or not.
 The #ifndef __HEAD_H or #if !defined(__HEAD_H) helps us to avoid multiple
inclusion error. That is, if we don't use the above preprocessor control line and if we include
head.h more than one time in our program, we will get error. Now you would ask me where to
write the function PrintHello1() and PrintHello2(). Yes, you have to write them in a
separate file and you have to create a library file or object file.

15.8 Pragma
 #pragma is used to control the compiler.

15.8.1 Example 1
 #pragma inline

 tells the compiler that the C file contains inline assembly and the compiler will
use TASM to assemble the inline codes.

15.8.2 Example 2
 Sometimes we write code that will be specific to memory models. In such a case our code
must be compiled in that memory model only (We have 6 different memory models: Tiny, Small,
Medium, Compact, Large and Huge). So programmers use conditional compilation method.

That is,

#ifndef __SMALL__ /* or #if !defined(__SMALL__) */
 #error compile with small memory model
#elif
 :
 :
 /* Program Codes */
#endif

There is of course a simple method to do this. That is to use pragma and to force the

compiler to compile in specified memory model.
That is,

#pragma -ms /* forces compiler to compile in small memory
model */
 :
 :
 /* Program Codes */
 :

 A to Z of C

53

15.9 Creating library file
 Creating a library(.lib) file is the easiest one. Let’s see one example.

/* chklib.c */
void PrintHello1(void)
{
 printf("Hello1");
} /*--PrintHello1()------*/

void PrintHello2(void)
{
 printf("Hello2");
} /*--PrintHello2()------*/

 Now choose OPTIONS>Applications...>Library. Then Press F9 to compiler. Now
you will get chklib.lib.
 Creating library file is a good way to organize your program. You can put all the
interrelated functions (say mouse functions) in a library file and then you can link the library file
whenever necessary.

 (e.g.) tcc mylib.lib foo.c

 Attention! you cannot link the library file that is created in one memory model with
another file that is created in another model. So it is advisable to create library file for each
memory model.

 (e.g.) mouset.lib (for Tiny), mouses.lib (for Small)

 If you write a effective library file, you can sell it without the source code! (Only a
narrow-minded people do that!)

15.10 Creating a project file
 I already pointed out that it is enough to have OBJ or LIB file to create an EXE file.
Project file allows you to organize these files.
 Let’s see how to create project file. Choose PROJECT>OPEN and enter the project name.
Now you will get a project window. Press [Insert] to add file. Add the respective OBJ, LIB and
C files. Now click [Done] and press F9 to compile the project file. You will get the EXE file.
When you create project file, you should note that more than one file should not have main().
 The applications of these ideas are dealt in forthcoming chapters.

15.11 Turbo C keywords
 Along with ANSI C keywords, Turbo C got the following keywords:

A to Z of C

54

near far huge cdecl
asm passed interrupt
_es _ds _cs _ss

 When you set the compiler to ANSI standard, you can use the above keywords as
identifiers.

15.12 Bugs & Remedy
15.12.1 system()

 People who use system() function may have noticed that it won’t work when run from
IDE. The reason is IDE reserves memory for its own use and there won’t be enough memory. But
when you run the corresponding EXE file in command line it will work properly. Let’s see it with
a real program.

int main(void)
{
 int err;
 err = system("DIR");
 if (err == -1)
 perror("Error: ");
 return(0);
} /*--main()------*/

 If you run the above program from IDE, you will get the following message:

 Error: Not enough memory

So running only the EXE file of respective program in DOS Box will be the remedy.

15.12.2 delay()

 The delay() function found in dos.h is processor dependent. And it won't work on all
systems. The reason is the delay function is implemented with clock speed.

15.12.2.1 Solution with BIOS tick

 An easy solution for this is to implement our own delay with the help of BIOS tick as:

 /* PC bios data area pointer to incrementing unsigned long int */

#define BIOSTICK (*(volatile unsigned long far *)(0x0040006CL))

 The BIOSTICK get incremented for every 18.2 times per second. But this is not much
preferred by the professional programmers.

 A to Z of C

55

15.12.2.2 Solution with int 8 handler

 You might have noticed that all DOS games work fine on all systems. The reason is game
programmers’ use the techniques of installing this int8 handler for delay as:

/* Author: Alexander J. Russel */
volatile unsigned long fast_tick, slow_tick;
static void interrupt (far *oldtimer)(void); /* BIOS timer handler */

void deinit_timer(void);

/*--
 new_timer
 Logic:
 You don't have to call the old timer, but if you don't
 you have to write some code to cleanup in de-init that
 fixes DOS's internal clock.

 Its also considered 'good form' to call the old int.
 If everyone does, then everything that other TSR's etc...
 may have installed will also work.

 If you skip the little chunk of ASM code- the out 20-
 you WILL LOCKUP all interrupts, and your computer

 Anyways, this test replacement just increments a couple of
 long ints. */

static void interrupt new_timer(void)
{
 asm cli
 fast_tick++;

 if (!(fast_tick & 3)) // call old timer ever 4th new tick
 {
 oldtimer(); // not the best way to chain
 slow_tick++;
 }
 else
 {
 // reset PIC
 asm {
 mov al, 20h
 out 20h, al
 }
 }
 asm sti
}

Note
Here we come across inline assembly. The clear
description can be found on next chapter.

A to Z of C

56

/*--
 init_timer
 Logic:
 see that 1st line of inline asm!
 to set whatever clock speed you want load
 bx with 1193180/x where x is the
 clock speed you want in Hz. */

void init_timer(void)
{
 slow_tick=fast_tick=0l;
 oldtimer=getvect(8); // save old timer

 asm cli

 // speed up clock
 asm {
 mov bx, 19886 /* set the clock speed to

60Hz (1193180/60) */
 mov al, 00110110b

 out 43h, al
 mov al, bl
 out 40h, al
 mov al, bh
 out 40h, al
 }

 setvect(8, new_timer);

 asm sti
}

/*--------------------------------
 deinit_timer */

void deinit_timer(void)
{
 asm cli

 // slow down clock 1193180 / 65536 = 18.2, but we use zero

 asm {
 xor bx, bx // min rate 18.2 Hz when set to zero
 mov al, 00110110b
 out 43h, al
 mov al, bl

 out 40h, al

 A to Z of C

57

 mov al, bh
 out 40h, al
 }

 setvect(8, oldtimer); // restore oldtimer

 asm sti
}

 Then we can use the following code in main() to get a machine independent delay.

next_time=fast_tick + 3; /* fast tick is incremented by
the int8 ISR (global)*/

while(next_time>=fast_tick)
 ; /* wait */

15.12.3 Floating point formats not linked
 You will get this error when the TC does some optimizing techniques. TC’s optimizing
techniques prevent the floating point to be linked unless our program needs. But in certain cases,
the compiler’s decision would be wrong and even though we use floating formats, it doesn’t link
it. Normally it would happen when we don’t call any floating point functions but we use %f in
scanf() or printf(). In such a case we must take effort explicitly to link floating formats.

struct foo
{
 float a;
 int b;
};

int main(void)
{
 int i;
 struct foo s[2];
 for (i=0; i<2; ++i)
 {
 printf("Enter a: ");
 scanf("%f", &s[i].a);
 printf("Enter b: ");
 scanf("%d", &s[i].b);
 printf("a=%f, b=%d \n", s[i].a, s[i].b);
 }
 getch();
 return(0);
} /*--main()------*/

A to Z of C

58

The above program will result in runtime error as:

Enter a: scanf : floating point formats not linked
Abnormal program termination

15.12.3.1 Solution with pragma directive

 One of the remedies for floating point formats link error is to include a pragma directive
in our file as per Borland’s suggestion:

extern unsigned _floatconvert;
#pragma extref _floatconvert

15.12.3.2 Another solution

 Another remedy for floating point formats link error is to use our own code to force
floating point formats to be linked.

void Force2LinkFloat(void)
{
 float a, *f=&a;
 f = 0000; / dummy value */
}

 Just include the above piece of code in your file. You don’t need to call the above
function. If the above function gets linked, with your code, it would automatically force floating
point formats to be linked.

15.12.4 Null pointer assignment
You will get this message when you assign a value through a pointer without first

assigning a value to the pointer. Normally it would happen if you use strcpy() or memcpy()
with a pointer as its first argument.

Your program may look as if it runs correctly, but if you get this message, bug will be
somewhere inside. The actual reason for the cause is you might have written, via a Null or
uninitialized pointer, to location 0000. Whenever TC finds exit() or returns from main(), it
would check whether the location 0000 in your data segment contains different values from what
you started with. If so, you might have used an uninitialized pointer. That is, you may get the
error message irrespective of where the error actually occurred.

The remedy for this problem is to watch the following expressions with Add Watch
(Ctrl+F7):

*(char *)0,4m
(char *)4

If the values at these locations get changed, it means that the line just executed is the one
causing the problem.

