

“Wisdom is better than weapons of war.”

Code Obfuscation

The word obfuscate means “to confuse”. Code Obfuscation refers to confusing others
with your code. In other words, Code Obfuscation is the technical term for crypting your code
and preventing others from reading the code (Just opposite to Readability). Code Obfuscation is
very interesting to most of the C programmers. Every year we have The International
Obfuscated C Code Contest. Throughout the world most of the C programmers participate in
this contest. As far as I know no Indian has yet received this prize. So in this chapter let’s see the
most interesting Code Obfuscation.

13.1 Where to contest?
To contest in The International Obfuscated C Code Contest, visit their official website

www.ioccc.org. There you can find the rules and important dates.

13.2 Guidelines
 char a[] = "ABCD"; /* string representation */
 char b[] = "\x41\x42\x43\x44"; /* hexadecimal representation */
 char c[] = "\101\102\103\104"; /* octal representation */
 char d[] = "A" "B" "C" "D"; /* using string properties */
 char e[] = {'A', 'B', 'C', 'D', '\0'}; /* using char propery */

In C all the above strings a, b, c, d and e represent “ABCD”. This is one of the simple
tricks used in code obfuscation.

13.3 Real Code
13.3.1 Wherami

The following program Whereami.c won “Best Small Program” prize in The
International Obfuscated C Code Contest held in 1992. This program was by Brian Westley
(aka Merlyn LeRoy).

Copyright © 1992, Landon Curt Noll & Larry Bassel.
All Rights Reserved. Permission for personal, educational or non-profit use is granted provided this this
copyright and notice are included in its entirety and remains unaltered. All other uses must receive prior
permission in writing from both Landon Curt Noll and Larry Bassel.

13

 A to Z of C

39

 main(l
 ,a,n,d)char**a;{
 for(d=atoi(a[1])/10*80-
 atoi(a[2])/5-596;n="@NKA\
CLCCGZAAQBEAADAFaISADJABBA^\
SNLGAQABDAXIMBAACTBATAHDBAN\
ZcEMMCCCCAAhEIJFAEAAABAfHJE\
TBdFLDAANEfDNBPHdBcBBBEA_AL\
 H E L L O, W O R L D! "
 [l++-3];)for(;n-->64;)
 putchar(!d+++33^
 l&1);}

 Any idea about the above code? It prints the world map! Quite amazing isn’t it?

Output: World Map - New Delhi marked with " (obtained by executing whereami 29 77)

13.3.2 Note

Following is a part of note added by Westley.
 Run the program as whereami <lat> <long>

Where lat and long correspond to your latitude and longitude.
To find the approximate place where this entry (The International Obfuscated C Code

Contest) was judged, type:

 whereami 37 -122 (- means west of meridian)

Run the program with your latitude & longitude as integer arguments; it will produce a
map made up of '!' with the given position marked with either a '"' (if the position is over a '!') or a
'#' (if the position is over a space). Southern latitudes and western longitudes are entered as
negative numbers. For example, to find San Francisco, run with "whreami 38 -122". The
resolution of the map is five degrees horizontally, ten degrees vertically. The map is a Mercator
projection with equal spacing of the latitudes, so the areas near the poles are very distorted.
Latitudes near the poles and Antarctica are not shown.

A to Z of C

40

The program requires the ASCII character set, putchar(), atoi(), and a display
that auto-wraps at 80 characters(!). If your display does not work this way, you will have to
massage the output; for example, you can pipe it to a file and edit it with an editor, which will do
autowrap for you.

If you run it with fewer than 2 arguments, it will likely give you an exception, as it will
access arguments that don't exist and characters before a string constant.

Logic

 The map is printed as one long string of ' ' and '!' characters, with the autowrap used to
stack up slices of 80. The map data is a string; the first character is how many '!'s are printed
('A'=1, 'B'=2, etc), the second character is how many ' 's, the third is how many '!'s, etc. ASCII
characters less than 'A' print no characters but still change the polarity, so any map of ' 's and '!'s
is possible. This is done in the putchar() argument as "33^l&1", where l is the character
position+4; if l is odd, ' ' is printed, if l is even, '!' is printed.
 The position of latitude & longitude is changed into a single character position within the
one long string via the first expression "d = latitude/10*80 - longitude/5 - offset" The latitude is
divided by ten because the vertical resolution is ten degrees, then multiplied by 80 because of the
80 character wrap (i.e. each ten degrees moves the position up or down one entire row). The
longitude is divided by five and added, because five degrees of change moves the location one
character. The signs are opposite because latitude is decreasing and longitude is increasing as
you go from upper left to lower right. The offset is where the origin (latitude=0, longitude=0) is
found.

The position counting down to zero changes the putchar() from printing ('!' or ' ') to
printing ('"' or '#').

The "H E L L O, W O R L D!" string inside the data string prints the line of blanks past
Tierra del Fuego and the last blank line. It's just for show, really.

Since the resolution is coarse, a few costal cities are shown to be just off the map; this is
an unavoidable artifact. The map is reasonably accurate. Here are some cities you might like to
try:

City Lattitude Longitude
New York
London
Moscow
New Delhi
Sydney
Los Angeles
Paris
Beijing
Rio de Janeiro
Tokyo

41
52
56
29
- 34
34
45
40
-23
36

-74
0
38
77
151
-118
2
116
-43
140

