

“It is better to be humble.”

Interesting Programs

Everybody might have the question: why programmers are prone to C? The answer is
very simple: C’s structure allows programmers to write a small-tight code for complex programs.
In this chapter let’s see a few interesting programs that use C’s real power.

10.1 Power of 2
How to find whether the given number is a power of 2? i.e., 1, 2, 4, 8, 16, 32.. are powers

of 2.

 #define ISPOWOF2(n) (! (n & (n-1))

 Amazing, isn’t it?

10.2 Prime Numbers
 Everyone knows that prime number is a number that is not divisible by any other number
except by 1 and itself. Hence the prime number series will be: 2, 3, 5, 7, 11, 13, 17, 19…
 Generation of prime number seems to be easy. But the efficient implementation is not
common. The following program does the efficient implementations and it will help you to
increase your programming skill.

#include <stdio.h>
#include <math.h>

typedef int BOOLEAN;

BOOLEAN IsPrime(int n) /* checks for prime */
{
 int i;
 BOOLEAN flag = (n>1);
 for(i=2 ; flag && i<=sqrt(n) ; ++i)
 flag = (n%i);
 return(flag);
} /*--IsPrime()--------*/

int main(void)
{
 int i;

10

A to Z of C

26

 for(i=1 ; i<1000 ; ++i)
 if (IsPrime(i))
 printf("%d " , i);
 return(0);
} /*--main()-----*/

 See, the BOOLEAN variable flag in IsPrime(). It is used to break the for loop. As
we haven’t used any break or jump statement, it is considered as a good programming.

10.3 Roman Letters
The following program will help you to improve your programming skill. The following

program converts the Arabic numbers to Roman numbers.

void InRoman(int n) /* converts arabic to roman */
{
 int i, v[] = { 1, 4, 5, 9, 10, 40, 50, 90, 100,
 400, 500, 900, 1000, 9999 };
 char *r[] = { "I", "IV", "V", "IX", "X", "XL", "L", "XC", "C",
 "CD", "D", "CM", "M" };
 while (n)
 {
 for(i=0 ; v[i]<=n ;++i)
 ;
 --i;
 n -= v[i];
 printf("%s", r[i]);
 }
} /*--InRoman()----------*/

int main(void)
{
 int n;
 printf("Enter the Arabic number: ");
 scanf("%d", &n);
 printf("In Roman, ");
 InRoman(n);
 return(0);
} /*--main()---------*/

Note

The above program works fine upto 4999, because for 5000 we have V. In ANSI C, we can’t get V. It can
be done with Turbo C(DOS programming) by changing character set with int 10h.

 A to Z of C

27

10.4 Day of Week
For a given date (i.e., year, month & day), we may need to know the day of the week

(i.e., Sunday or Monday…). We have so many ways to find that. But the code by Tomohiko
Sakamoto is very interesting as well as mysterious! Here is the code…It works for the years
greater than 1752 (Gregorian Calendar).

int DayOfWeek(int y, int m, int d) /* returns Day of Week:
0 = Sunday, 1= Monday...

*/
{
 static int t[] = { 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 };
 y -= m < 3;
 return (y + y/4 - y/100 + y/400 + t[m-1] + d) % 7;
} /*--DayOfWeek()--------*/

10.5 Calendar
The following program prints the calendar for a given year like Unix’s cal utility.

However, it won’t work exactly like “cal” for year-wise output. For that you need to store the
output in an array as a grid.

#include <stdio.h>
#include <stdlib.h>

int Days_Tbl[2][12] = {
 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
 };
char *Month_Tbl[12] = {
 "January", "February", "March", "April", "May",
 "June", "July", "August", "September",
 "October", "November", "December"
 };

int FirstDayOfMonth(int m, int y);
void PrintCalendar(int m, int y);

int FirstDayOfMonth(int m, int y)
{
 int i, leap;
 long d;

 if (y>1752) /* for Gregorian Calendar */
 {
 leap = (y%4==0&&y%100!=0 || y%400==0);

A to Z of C

28

 d = 365L*1752 + 1752/4;
 d += 365L*(y-1752-1) + (y-1752-1)/4 - (y-1752-1)/100
 + (y-1752-1)/400 + 6;
 }
 else /* for Julian Calendar */
 {
 leap = (y%4==0);
 d = 365L*(y-1) + (y-1)/4 + 6;
 }
 for(i=1; i<m; ++i)
 d += Days_Tbl[leap][i-1];
 if (y>1752 || (y==1752 && m>9))
 d -= 11;
 return(d % 7);
} /*--FirstDayOfMonth()--------*/

void PrintCalendar(int m, int y)
{
 int i, leap, firstdayofmonth;

 firstdayofmonth = FirstDayOfMonth(m, y);
 leap = (y>1752) ? (y%4==0&&y%100!=0 || y%400==0) : (y%4==0);

 printf("%13s - %d\n", Month_Tbl[m-1], y);
 printf("Sun Mon Tue Wed Thu Fri Sat\n");
 for (i=0; i<firstdayofmonth ; ++i)
 printf(" ");
 for (i=1 ; i<=Days_Tbl[leap][m-1] ; ++i)
 {
 printf("%3d ", i);
 if ((firstdayofmonth + i)%7 == 0)
 printf("\n");
 if (y==1752 && m==9 && i==2)
 {
 i += 11;
 firstdayofmonth += 3;
 }
 }
 printf("\n");
} /*--PrintCalendar()-----*/

int main(int argc, char *argv[])
{
 int m, y;
 switch(argc)
 {
 case 1:

 A to Z of C

29

 printf("Syntax: cal [month] year \n");
 break;
 case 2:
 y = atoi(argv[1]);
 for (m=1 ; m<=12 ; ++m)
 {
 PrintCalendar(m, y);
 printf("Press <ENTER>....\n");
 getchar();
 }
 break;
 case 3:
 m = atoi(argv[1]);
 y = atoi(argv[2]);
 PrintCalendar(m, y);
 }
 return(0);
} /*--main()----*/

10.6 Memory-Swap
 Normal Memory

head tail

Swapped Memory

tail head

Consider the situation in which you want to swap the contents of memory without using

much external storage space and one portion is larger than the other. In our example, the head
portion is larger than tail. It is really a tough job. The code by Ray Gardner efficiently solves
this problem.

/* memrev: reverse "count" bytes starting at "buf" */
void memrev(char *buf, size_t count)
{
 char *r;

 for (r = buf + count - 1; buf < r; buf++, r--)
 {
 *buf ^= *r;
 *r ^= *buf;
 *buf ^= *r;
 }
}

A to Z of C

30

/* aswap: swap "head" bytes with "tail" bytes at "buf" */
void aswap(char *buf, size_t head, size_t tail)
{
 memrev(buf, head);
 memrev(buf + head, tail);
 memrev(buf, head + tail);
}

10.7 Block Structure
 When we want to declare a variable in the middle of the program, we use block structure
as:

int main(void)
{
 int a;
 a = 5;
 :
 :
 {
 int b; /* declaration requires block structure. Value of

‘b’ is available only to this block */
 b = 6;
 :
 }
 :
}

10.7.1 Swap macro using Block Structure
When we need a swap macro that works for any data types, we must use block structure.

#define SWAP(datatype, a, b) { \
 datatype a##b = a;\
 a = b; \
 b = a##b; \
 }

In order to swap the values of two variables we need a temporary variable and it needs a
name. In fact the name may be temp. But if someone passes a variable that has a name temp, like
SWAP(int, a, temp), everything will collapse! So, we use the preprocessor argument
concatenation operator ## to create the name (here we get ab) from the actual variable names in
the call. This guarantees that the result won't be either of the actual arguments.

Using XOR(^) operator also we can write the above SWAP macro. Here is the code…

#define SWAP(datatype, a, b) \
 (unsigned char *)x=(unsigned char *)(&(a)); \

 A to Z of C

31

 (unsigned char *)y=(unsigned char *)(&(b)); \
 size_t size = sizeof(datatype); \
 while (size--) { \
 *x ^= *y; \
 *y ^= *x; \
 *x ^= *y; \
 x++; \
 y++; \
 }

10.8 Printf with %b
 Using the conversion characters %X and %0 we can directly print any decimal number as
hexadecimal and octal. But to print binary value, we don’t have any conversion characters. The
following program introduces ‘%b’ as a conversion character for binary.

#include <stdarg.h>

void MyPrintf(char *fmt, ...)
{
 va_list aptr; /* Points to each unscanned arg in turn */
 char *p, *sval, str[17];
 int ival;
 double dval;
 va_start(aptr, fmt); /* Initialize the argument pointer. */

 /* Retrieve each argument in the variable list... */
 for(p=fmt; *p ; ++p)
 if(*p=='%')
 switch(* ++p)
 {
 case 'd':
 ival = va_arg(aptr, int);
 printf("%d", ival);
 break;
 case 'f':
 dval = va_arg(aptr, double);
 printf("%f", dval);
 break;
 case 's':
 for(sval=va_arg(aptr, char*); *sval; ++sval)
 putchar(*sval);
 break;
 case 'b': /* for binary */
 ival = va_arg(aptr, int); /* Get it as integer */
 /* radix should be 2 for binary in itoa... */
 itoa(ival, str, 2);

A to Z of C

32

 for(sval=str; *sval; ++sval)
 putchar(*sval);
 break;
 default:
 putchar(*p);
 }
 else
 putchar(*p);
 va_end(aptr); /* Clean up when done */
} /*--MyPrintf()----------*/

int main(void)
{
 MyPrintf("7 in binary is %b \n", 7);
 return(0);
} /*--main()-----*/

 This is not a complete implementation of printf(). In fact MyPrintf() don’t work
for %1d, %u, and other format strings. The complete implementation is left to the reader as an
exercise.

Exercises

1. Write a program that use only bitwise operators to multiply any number by 2.
2. Find out the difference between Unix’s text file and DOS’s text file. Write a program that

converts Unix based text file into DOS based text file, and vice-versa.
3. Implement your own data type for very very long integer (i.e., it should accept any

number of digits say, 899999998998998998998998989989). Use that data type to find
out factorial for any number.

Suggested Projects

1. Write source code colorizer software. Source code colorizer formats the given C file into
HTML file with necessary syntax highlighting. (Hint: You may need to know the
syntaxes of HTML)

2. Write a utility that indents the given C file. That is it should align the C code properly for
better clarity.

3. Solve all the questions in K&R. It’s really a tough project as no one achieved it
successfully!

